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Abstract—The emerging multi-modal applications exemplified by
multi-DNN inference have renewed interests for mobile intelligence.
The goal is to utilize heterogeneous processors on-board to
maximize throughput and resource utilization. Among a variety
of options, building model-parallel pipelines across different
processors is a promising way. However, the existing efforts either
focus on optimizing homogeneous DNN executions or simply ignore
co-execution slowdown on the shared memory bus. Based on
extensive empirical studies and insights with various degrees of
resource contention, in this work, we introduce Hetero“Pipe, a
two-step pipeline planner based on dynamic programming, and
contention-mitigated pipeline bubble minimization to make the
problem tractable within manageable search space. The extensive
evaluation across three commercial SoCs demonstrates 2-8x
speedup compared to the state-of-the-art schemes.

Keywords-Pipeline parallelization; emerging multi-DNN infer-
ence; co-execution memory interference; consumer mobile devices.

I. INTRODUCTION

Recently, we have witnessed tremendous applications of on-
device intelligence, that drives performance beyond the real-time
processing speed for mobile devices. For example, inference
of MobileNetV2 on Snapdragon 778G at 76 FPS, ResNet50
(FP16) at 30 FPS on CPUs, and over 100 FPS for ResNet50 on
the Kirin 990 Neural Processing Unit (NPU). On the other hand,
the emerging multi-modal applications are reshaping system
design with a transition from the canonical single-DNN inference
towards multi-DNN inference for different downstream tasks
and applications. For example, a scene understanding app could
be comprised of YOLO for robust object detection [1], [2],
FaceNet [3], Age/GenderNet [4] for facial, age and gender
recognition and ViT-GPT2 for scene-to-text captioning [5].
Although heterogeneous processors such as embedded GPU
and NPU create new opportunities to share the workloads, the
existing computing paradigm on mobile devices is still CPU-
centric with serial execution and resource under-utilization [6].

Problem. Pipeline parallelism is a typical way to improve
resource utilization, as evidenced by its recent success in model-
parallel training of large language models [7]-[9], in which
the model is partitioned onto different GPUs to overcome the
memory limit and training data are fed in micro-batches to form
a pipeline to maximize resource utilization. For mobile devices,
we are curious to answer a similar question:

§ “Given an array of heterogeneous mobile processors, can
we migrate the paradigm of model-parallel training from cloud

GPUs to support multi-DNN inference on mobile devices? If
yes, what adaptations are needed?”

Challenges. Although multi-DNN inference is free from
the long-range dependencies of backpropagation in model-
parallel training (i.e., inference does not need additional memory
space for gradient storage like training), we are still facing a
cohort of new challenges with multi-faceted heterogeneity across
the micro-architecture as well as the algorithmic levels from
processors and models (hence the name Hetero?). Specifically,
mobile processors exhibit distinct processing power, thermal and
throttling behaviors with diverse programmability and operator
support from the CPU, GPU and specialized processors such as
NPU or TPU. For programmability, most mobile inferences are
executed on the CPU cores, but subject to high throttling [10];
embedded GPUs such as ARM Mali and Qualcomm Adreno are
accelerated by OpenCL, with fewer GPU cores and optimization
compared to Nvidia GPUs powered by CUDA; NPU is the ideal
processor, but it only supports very limited number of operators
— any model with an unsupported operator would have to fall
back to the CPU, which creates additional overhead of memory

copy.

Latency on t s processors (Kirin990 Latency on 789)
[ ResNet50 [ ResNet50
3000{ = MobileNetv2 =1 MobileNetv2
B Inceptionvd 3000] T Inceptionv
= YOLOv4 B YOLOv4
__ 20001 gy BERT BN BERT

1000
1000
500
B
1 I . b 100
: : N |
o | ___| ___|

CPUBig  CPU Small GPU OpenCL NPU DaVinci 0 CPU Bi

Heterogeneous Processors

Latency (ms;
Latency (ms)

o
3
3

3
3

i CPU Small
Heterogeneous Processors

GPU OpenCL

Fig. 1: Processing latency of different models on heterogeneous
processors. For mobile SoCs, the Big CPU cores are generally
on par with OpenCL GPU, while the Small cores pose high
performance degradation. NPU has the fastest speed but very
limited support for a diverse set of operators and an error is
reported due to unsupported operators in the MNN framework
for both YOLOv4 and BERT [11].

More importantly, unlike GPU clusters with high-bandwidth
interconnections (NVLink over 200 Gbps), mobile SoCs couple
computing units on the same die with shared bus and memory
controller. Energy efficiency also demands low bandwidth de-
signs with active memory frequency throttling based on workload
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intensity. These have effectively reduced the memory bandwidth
below 20 Gbps [?]. Different from cloud GPUs, co-execution
of inference on heterogeneous processors simultaneously would
lead to competition for shared resources on the memory bus
with various degrees of slowdown [12], [13]. For different
models, intermediate dimensions directly affect data locality and
hardware affinity [14], that vary significantly between different
generations of model architectures such as Convolutional and
Transformer networks as shown in Fig. 1. For example, while
small convolutional kernels have better computational efficiency
and data locality, the multi-head attention and quadratic com-
putational complexity in Transformers necessitate large matrix
multiplications that often exceed the L2 cache size of mobile
CPUs, thereby causing high memory access, processing latency
and energy overhead. Such heterogeneity makes it difficult to
find an appropriate mapping of workloads to different processors.

Hence, the response to our previous query remains to further
tackle a series of intertwined modeling and system design
questions of how to split each model into pipeline stages
and map them to heterogeneous processors optimally? How to
efficiently model resource contention under manageable profiling
efforts? How to balance workloads across different processors
under potential memory interference? The main inefficiency
of pipeline execution stems from unbalanced loads between
different stages because throughput is always bottlenecked
by the slowest stage. Though there is a long list of works
on model-parallel training in cloud GPUs [7]-[9], [15], their
formulation and solution are generally limited to homogeneous
GPUs. In contrast, mobile devices exhibit unique challenges
of memory interference when workloads are co-executed on
different processors. This diminishes the optimization effort of
pipeline schedules — in fact, very few of the existing works have
actually considered planning under co-execution slowdown [12]-
[14], [16], especially on mobile devices. As a result, to pipeline
heterogeneous processors, the resonance between resource under-
utilization and runtime contention poses a dilemma: increasing
the utilization often exacerbates the contention problem and
load unevenness across different stages.

Solution. This paper proposes a new approach, called
Hetero?Pipe, that organizes multi-DNN requests on heteroge-
neous processors with a contention mitigation strategy. Upon
realizing the fact that a single-step problem formulation in most
of the previous works such as [7], [8], [17] cannot fully capture
the dual heterogeneity in our system, we decouple pipeline
planning into a more tractable two-step optimization problem
along the horizontal and vertical directions of the processing
pipeline. Unlike prior work that focuses on homogeneous proces-
sors or ignores co-execution slowdown, our two-step approach
specifically addresses dual heterogeneity (processor/model) and
shared memory contention. The horizontal partitioning uses
Dynamic Programming adapted for heterogeneous operator
support (e.g., NPU fallback), while vertical alignment introduces
a contention-aware work stealing mechanism to mitigate memory
bus interference unique to mobile SoCs. The main contributions
of this paper are summarized as follows:

< Motivation: We conduct extensive empirical studies to
analyze the impact the dual heterogeneity of processors and
network models, and resource contention on shared memory
bus through performance counters. We discover counter-
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intuitive phenomenons that some lightweight models are
actually memory-bound, thereby leading to high memory
interference to concurrent executions. Based on these ob-
servations and measurements, we characterize such model-
specific contention footprints via an effective regression
model, without external efforts to profile a large number
of co-execution combinations.

Methodology: We propose a two-step pipeline planning
approach to minimize the pipeline bubbles (idle periods
caused by stage misalignment as formally defined in Sec.
1V). To our best knowledge, this is the first work that
considers co-execution slowdown in pipeline planning
for resource-constrained edge devices. Our strategy in-
corporates a contention window to re-arrange incoming
request at the minimum displacement cost. It transforms
the complex contention mitigation problem into the classic
Linear Assignment Problem with polynomial-time solutions
and employs working stealing between different pipeline
stages to minimize pipeline bubbles and improve resource
utilization.

Evaluation: We provide extensive evaluations on three
commodity SoCs of Snapdragon 778G, 870 and Kirin
990 with large model combinations from the earliest
CNN models, YOLOvV4 object detectors [1] to the latest
transformer architectures such as BERT [18] and ViT [19].
The results demonstrate 4-8x and 2-3x speedup compared
to vanilla MNN [11] and Pipe-it [20]. Confronting the
competitive SOTA scheme of Band [21], our strategy
also achieves additional 5% gain due to extra pipelining
optimizations.

II. BACKGROUND AND RELATED WORKS
A. Heterogeneous Mobile Computing

ARM Big.LITTLE is the de-facto standard to achieve energy-
efficiency in mobile devices. However, with the increasing
computational demand and limited thermal-area budget, mobile
CPUs are no longer capable of handling the variety of on-device
computational loads alone. Thus, considerable efforts from the
vendors are devoted to strengthening the computational power
with heterogeneous processors such as embedded GPU and NPU,
with a growing number of works exploring the design space on
heterogeneous processors. Pipe-it leverages the Big and Small
CPU cores for fine-grained partition of the convolutional models
with a flexible pipeline of different CPU cores [20]. However,
as validated by this work, an in-cluster partition of the CPU
cores leads to evictions and conflicting cache misses down the
cache hierarchy. MASA proposes a technique to reduce the
peak memory footprint and page faults while executing multiple
DNN inference [22]. Blasnet supports real-time DNN model
inference on CPU-GPU platforms through block-level model
optimization and scheduling [23], but lacks a pipelining strategy
to handle multi-DNN requests.

Another acceleration strategy is called intra-operator partition.
pLayer develops a cooperative strategy leveraging the mobile
CPU-GPU to partition the DNN in a channel-wise manner [24].
Intra-operator partition has been also implemented by [6], [25]
on different granularities. For example, NN-Stretch proposes
branch-parallelism that transforms a network into multiple
paralleled branches on different processors [6]. However, the
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TABLE I: State-of-the-art methods for on-device inference

Related Work Processors multi-DNN  DNN Hetero. Pipeline Contention Algorithm
Pipe-it [20] CPU v X v X Local Search
MASA [22] CPU v v X X BinPacking

EdgePipe [26] CPU v X v X DP
Gillis [17] CPU v X v X DP
puLayer [24] CPU, GPU X X X X —
PICO [30] CPU v X v X DP
DART [31] CPU, GPU v X v X DP
BlasNet [23] CPU, GPU v X X X DARTS
Band [21] CPU, GPU, NPU v v X x Greedy

]'lelem2 Pipe (Ours) CPU, GPU, NPU v v v v DP+Work Stealing

intermediate results from different processors are deemed to
be merged with additional overhead of significant communi-
cation/memory copy per split. The closest work to ours is
Band [21], which takes advantage of the superiority of the
NPU and rolls back unsupported operators to the CPU or
GPU. However, it only involves impromptu subgraph-processor
mapping with an unoptimized strategy without effective pipeline
planning.

B. Pipeline Planning

Model partition is a common strategy to distribute workloads
on various computing units. A handful of previous efforts have
explored DNN partitioning with Dynamic Programming [7]-[9],
[17], [26] and other heuristics/solvers [20], [27], [28], that
a majority of them focus on building an efficient pipeline
for model-parallel training [7]-[9], [27]-[29]. Gillis considers
partitioning a large model across multiple serverless functions
and reduces the memory footprint for each function [17].
EdgePipe and PICO propose distributed frameworks on multi-
ple heterogeneous devices with dynamic programming-based
optimal partitioning strategy [26], [30]. However, these works
only focus on optimizing inference requests with homogeneous
model structures. DART leverages data parallelism for CPU/GPU
platforms [31], but co-execution contention is not considered
and the implementation is only based on homogeneous models
as well. In this work, we consider a more difficult and
realistic scenario of multiple heterogeneous model requests
on different processors with co-execution slowdown and bubble
minimization, which extends towards a much larger search
space that has not been studied before. A detailed comparison
is available in Table I.

III. RESOURCE CONTENTION ON HETEROGENEOUS SOC

We first motivate our study by showcasing the benefits of
utilizing the heterogeneous processors in Fig. 2(a). Obviously,
for multi-DNN inferences, canonical implementations with
serial processing on the Big CPU cores is subject to large
queueing delay and introducing heterogeneous processing power
alleviates the performance bottleneck. However, co-execution
leads to resource competition and the dependencies on model
combinations pose unique contention profiles.

Our initial finding is that the interference between CPU-GPU
is much higher than CPU-NPU or GPU-NPU. For example, co-
executing YOLOv4 and BERT results in 18%, 21% slowdown
on CPU-GPU, while only 3%, 4.5% on CPU-NPU and 2%, 2.3%
on GPU-NPU. This is possibly due to specialized design of NPU
and dedicated memory path, which is less prone to resource
contention. For CPU and GPU co-execution, the slowdown ratio
is summarized below.
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Fig. 2: Empirical results on Kirin990 SoCs: (a) The queueing
delay accumulates with serial execution on the CPU big cores
(CPUp) and bringing heterogeneous processors reduce the
performance bottlenecks substantially; (b) Resource demands of
executing different models (Observation 2/3). y-axis is ranked
according to the contention intensity, explained in Eq. (1).
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Observation 1 (Slowdown Consistency on CPU/GPU)
The slowdown ratios across the CPU and GPU are generally
consistent, i.e., equal-priority execution suffers from identical
slowdown across the CPU-GPU. In other words, for different co-
execution model pairs, it is less likely to have a large slowdown
on the CPU but little on the GPU, or vice versa.

In fact, this is guaranteed by the fairness-aware scheduling
policies in most commercial SoCs, and the memory controller
often prioritizes requests with higher row-hit to maximize the
total bandwidth [12]. As a result, when such a high row-buffer
hit rate is no longer sustained under contention, a slowdown
is observed on both CPU-GPU even though the peak memory
bandwidth is not reached. Thus, it is sufficient to measure
the resource demands from solo executions as a proxy to
indicate co-execution slowdown [13]. For DNNs, in addition to
compute intensities, resource contention originates from the inner
structures such as tensor dimensions, operators and precedence
relations, and we describe the impact from these latent factors
as explained below.

TABLE II: Slowdown comparison of SqueezeNet and ViT

Solo-Exec Co-Exec

Model Processor Time(ms)  Time(ms) Slowdown
SqueezeNet CPU_B 13.46 17.02 26.43%
BERT GPU 1109.23 1233.36 11.22%
BERT CPU_B 553.91 670.31 21.01%
SqueezeNet GPU 18.83 21.12 12.16%
ViT CPU_B 453.37 504.56 11.29%
BERT GPU 1109.23 1171.39 5.60%
BERT CPU_B 553.91 613.57 10.77%
ViT GPU 1474.53 1612.87 9.38%

We read the Processor Monitor Unit (PMU) of perf event
from the CPU to indicate the interference on the GPU !. In par-
ticular, we examine Instructions Per Cycle (IPC),
Cache Misses Rate and Stalled Cycles Backend

'Embedded GPUs such as ARM Mali and Qualcomm Adreno also lack the
variety of performance counters compared to CPUs.
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Fig. 3: An example of major steps of Hetero?Pipe: @ Multimedia inputs such as images and text;@® Multi-DNN requests defined
by the downstream tasks; ® Execution on a heterogeneous platform of Kirin 990 SoC with shared interconnections; @ Partition of
each model inference along the horizontal directions independently; @ Interleave the high contention models by re-arrangements;
O Vertical alignments to reduce the pipeline bubbles by work stealing.

shown in Fig. 2(b). 1) IPC measures how efficiently the CPU
executes instructions; higher values indicate better efficiency
and less time spent on accessing external memory, thus less
interference to other processes. 2) High cache miss rate indicates
poor locality with higher memory access, which contends for
limited memory bandwidth. This could be caused by sub-optimal
implementation of matrix multiplications where the tensors do
not fit into the L2 cache. 3) High backend stall suggests that
the CPU frequently waits for resources, which is exacerbated
by resource contention.

Observation 2 (Contention from Heavy-weight Models).
Matrix multiplication (MatMul) with large dimensions have
lower data locality and is often memory-bound. These include
the Fully connected (FC) layers in most CNN models such as
the VGG family as well as the multi-head attention layers in
Transformers such as BERT.

Our experiment shows that the FC layers in VGG/AlexNet

alone have 2-4x higher cache miss compared to CONV layers
on ARM Cortex A76. Similarly, multi-head attention layers with
768 x 768 MatMul and the Layer Normalization layers with
768 x 3072 MatMul in BERT also impose high memory access,
but the uniform intermediate dimensions of Transformers make
model partition and pipeline planning more straightforward
compared to convolutional models.
Observation 3 (Contention from Lightweight Models).
Intuitively, lightweight models measured by FLOPs should
incur less contention to their co-executing peers. However, we
discover surprising outliers that models such as SqueezeNet
(4.8MB) and GoogleNet (23 MB) have relatively high resource
demands, indicated by IPC, Stalled Cycles Backend
and Cache Miss Rate. As shown in Table II, during co-
execution, SqueezeNet imposes an additional 10% slowdown
compared to large models like ViT of 70x in size.

Thus, it is imperative to develop a method to quantify
contention intensity so the demanding model requests are
interleaved temporally. Thus, we leverage the effective perf
events as features X = {x1, 22, x5} to learn a regression of
contention intensity Y with an a-regularization term to alleviate
overfitting,

W = argmin (XW —Y)T(XW ~Y) + o [W[2 ()

where the weight matrix can be calculated as W = (XX +
aI)*lXTY, I is the identity matrix. Thus, for new inference
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requests, we could quickly estimate its contention intensity given
the perf event statistics as shown in Fig. 2(b).

IV. SYSTEM MODEL AND PROBLEM FORMULATION

System Model. We consider consumer mobile devices with
three typical heterogeneous processors: CPU, GPU and NPU,
where the CPU consists of Big/Small clusters. The GPU/NPU are
considered as a single unit and cannot be partitioned further [21],
[32]. Different from CUDA platforms, the CPU is accelerated
by ARM NEON (SIMD for multi-core CPUs) [33]; GPU accel-
eration is enabled by cross-compiling with OpenCL [34] and
NPU inference is launched via a proprietary API interface [35].
The streaming inference requests are comprised of a set of
M heterogeneous models. We organize the processors in a
descending order of their processing power (processing speed:
NPU > CPU Big > GPU > CPU Small). For NPU, if a single
operator is not supported, it leads to processing error and a
viable way is through operator fallback [21]. Hetero?Pipe also
supports this by forwarding the sub-model to the CPU Big
cores/GPU.

The entire system architecture is shown in Fig. 3: @ the
system takes multimedia inputs such as images and text; @-©
launch multi-DNN requests for the downstream applications on a
heterogeneous SoC; @ partition each model along the horizontal
directions independently; @ interleave the high contention
models by processing re-ordering; ® reduce the pipeline bubbles
by work stealing in the vertical direction. To dispatch the models
to different processors, we perform model slicing as defined
below.

Definition 1 (Model Slicing). Define a K-way partition
P = {p1,--- ,px} that splits the model into layer slices and
distributes to K heterogeneous processors,

P — {{l()v cee 71;01*1}7{11)17’ . '7lp2*1}7’ L) {lpl(—17‘ . '7ZPK}}7

where K is also the pipeline depth. Since it is computationally
intensive to provide a layer-wise granularity for slicing large
models, we consider a coarse-grained model slicing strategy of
K slices.

Definition 2 (Execution time). The total execution time T} (+)
of a model slice {lp, - ,lp,.,—1} on processor k is defined
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as,

7 __me c
Tk(lpkv e 7lpk+1—1) = Tk (lpm e 7lPk~+1_1) +Tk(lpk-’ lpk-+1—1)
solo execution time memory copy time
co -
+ Tk (lpkv e 7Z;Dk+1—1|lpw e »lpi+1—1»l € M/k)

co-execution slowdown

@)
where the first term is the pure execution time when the
model slice is executed alone on processor k. The second
term represents the memory copy time while copying the
input/output tensor between different memory addresses on
the unified memory architecture for different processors. The
last term represents slowdown given two or more processors are
co-running different model slices. A caveat in pipeline planning
is the sequential interdependence between consecutive stages. If
the finishing times are misaligned, they could lead to substantial
pipeline bubbles and resource wastage as defined below.

I 4 5 [ ] idle Bubbles
K=1 4

I:l Parallel column
K=2

- DNN requests
K=3

L

Bubbles: =l -+l -y =l -7 Time

Fig. 4: An example of a three-stage pipeline.

Definition 3 (Pipeline Bubbles). Similar to [7], we define
pipeline bubbles as the idling time of processors due to pipeline
stall (Fig.4), i.e., when a model slice completes on processor k,
but waits for processor k + 1 to finish processing. Specifically,
denote sub-model i on processor k as M} and its processing
latency as T,ﬁ for short. Denote the concurrent workloads as M,
j=1,2,...,IM|+ K — 1, which is represented by different
columns of simultaneous execution of model slices in the vertical
direction. Formally, the bubble size | B;| for the j-th sub-models
on different processors can be written as,

m= 3 (
My eM;

In addition to the dependency and misalignment due to load
unbalancing, the co-execution slowdown would also exacerbate
pipeline bubbles. Different from model-parallel training [7]-[9],
we also optimize bubbles accumulated at the tail of the pipeline
for inference. The following property demonstrates an empirical
relation between pipeline bubbles and the overall latency.
Property 1 (Bubble vs. Latency). There is a linear relation
between pipeline bubbles and the overall latency (empirically
evaluated by Fig. 12 in Appendices). Hence, optimizing the
overall latency and throughput are equivalent to minimizing the
pipeline bubbles.

Problem Formulation. Our goal is to find a pipelining
plan such that the total inference delay is minimized. We
formulate it into a two-step optimization problem in the
horizontal and vertical directions: horizontally, we partition each
model independently to balance workloads across heterogeneous
processors and minimize the makespan; vertically, we consider
heterogeneous model slices across K processors based on the
horizontal solutions to reduce pipelining bubbles with contention
mitigation.

max {T;} — T,
YM}EM,

3
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Horizontal Direction (P1). For each model M, the horizontal
optimization aims to find partition strategy P such that the
maximum execution time (makespan) is minimized, which
effectively balances the computational loads across different
processors,

max Tyl .-+l

P1:P = argmin

{p1, pr} 1SkSK -1

where |P| K and Vi = {1,---,m} € M. Since the

horizontal formulation optimizes different models independently,

we further consider the vertical direction across different
pipelining stages.

Vertical Direction (P2). Since horizontal optimization per-
forms optimal partition for each model/processor independently,
it leaves workloads across different processors unbalanced with
pipeline bubbles. The vertical optimization problem aims to
minimize the sum of bubbles,

“

Zi7k+1—1)7

[M[+K~1
P2:min Y |B 3)
j=1
s.t.

K . .
Z |{l;);k+1a e J;Zicj__ll}‘ < C(mem (6)
k=1
T Upys - s lppsr—1llpy o S by -1, € M/Kk) >0 (7)
t;)k—l +le(l]z)k71"” ’ ;’k*l) St;k ®)

Constraint (6) imposes that concurrent execution of model
slices is bounded by the memory capacity Cpenm to avoid
page faults and performance degradation due to memory
swaps [22]. Constraint (7) states that co-execution slowdown is
non-negligible on realistic edge devices. Constraint (8) ensures
the precedence of executing consecutive model slices down
the pipelines, i.e., processor & must wait for the tensors from
processor k — 1 from the previous stage.

V. CONTENTION-AWARE HETEROGENEOUS PIPELINE
EXECUTION

In this section, we optimize inference execution on mobile
processors by considering both model and processor heterogene-
ity describe in the following. For completeness, we also analyze
the solution search space in the Appendices.

A. Horizontal Model Partitioning

Horizontal optimization can be obtained by solving | M|
dynamic programming problems independently. With a slight
abuse of notation, define T¢ (4, j) as the sum of T¢(l;,...,1;) +
T¢(1i, ;) that combines the solo execution and memory copy
time in Eq. (2) for each model.

Solution via Dynamic Programming. For the n-layer
network, the partition problem has an optimal sub-structure.
Define S*(j, k) as the min-max execution time in the optimal
partition from layer O to j on k processors, where 1 < k < K
and 0 < j < n — 1. S*(j,k) has the following optimal sub-
structure:

T3(0, 4), k=1

S*(j, k) = { 2ax Te (), k=j
_<1_1iin kmax{S*(i — 1,k —1),T£(3,5)}, otherwise,
1SIsSNn—
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Algorithm 1: Horizontal Model Partitioning
t Input: T¢ (4,7), k € K.

2 Output: S* = {S1,52,...,Sx_1}.
3 Initialize Vj € [0,n — 1], 5™ []][1] — T§(0,7)
4 for k=210 p do

5 P4 2

6 for j=0ton—1do

7 Sz — max(S* (i — 1,k —1),T¢_(4,5))
8 if S} o =5*(—1,k—1) then

9 | S*(,k) < S*(i—1,k—1)

10 else

1 while T¢_, (i +1,5) > S*(i,k — 1) do
12 | i+i+1

13 S*(j, k) = min(S*(i,k — 1), T¢_ (4, 5))
14 S;«+0

15 for S; =1ton—1do

16 if T2(S;,S5;5) > S*(n —1,p) then

17 SUS;

18 Sl (*Sj

19 k+k+1

20 return S* = {S1,52,...,Sk_1}

where the first two are boundary conditions and the last one
is the recurrence equation. By utilizing the sub-problems of
S*(i — 1,k — 1) and T¢(4,7), we can iteratively obtain the
optimal partition S*(j, k).

The entire procedure is detailed in Algorithm 1. We first
initialize a table S™* as the latency for the partition decisions. For
each row j, the optimal solution of a single partition, S* (7, 1), is
computed using 7§ (0, j) and serves as the basis for subsequent
recursive state transitions. For the remaining partitions, from
k = 2 to p, we partition from [0,¢] with an initial value of

= 2. Iterating over each row from j = 0 to n — 1, the
maximum partition cost is identified via max(S*(i — 1,k —
1),T¢_,(i,4)). This bifurcation in strategy is due to if the
division time for [0, ¢] into k— 1 partitions exceeds the inference
time for [¢, j], the optimal partition cost S*(j, k) is equivalent

to S*(i— 1,k — 1), thereby reducing unnecessary computations.

When T¢_,(i,j) > S*(i — 1,k — 1), further partitioning is
required. Hence, the goal is to locate a balance point i, such
that the segment sum from ¢ to j (T_,(¢,7)) minimizes the
discrepancy with the optimal solution obtained by dividing the
first ¢ rows into k— 1 partitions. The state transition is completed
by setting S*(j, k) = min(S*(z,k — 1), T¢_,(¢,7)). To analyze
the complexity, we leverage the monotonicity property to reduce
the search space.

Property 2 (Monotonicity). T (i, j) satisfies the following
monotonicity condition:

S TE(+1,7) <TE(,4) < TE(d,7+1),0<i<j <n—1,

1<k<K.

& TE(i,5) =0, only if j <.

Based on the monotonous property of T (4, j), the algorithm
updates the value of ¢ based on the condition T}_, (i + 1, j) >
S*(i,k —1). Once S*(n — 1, p) is obtained, we can backtrack

through table S* to identify the optimal set of partition points.

Computation Complexity. For n layer model, binary search
takes O(nK) iterations. We leverage prefix sum to optimize
the computation of T¢(¢,7) in O(1). With the monotonicity
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property of T¢(i,j), we reduce the time complexity from
O(n?K) to O(nK). In the worst case, when K = n, Algorithm
1 takes O(n?) time. For serial processing of the | M| models,
O(JM|nK) time is required.

B. Mitigation of Co-Execution Interference

Interference on the memory bus occurs when the resource-
demanding workloads are co-located to each other in the pipeline,
i.e., when slices from the resource-intensive models are mapped
to the same temporal axis. A solution is to re-order the input
sequence such that the demanding workloads are temporally
interleaved, while preserving the original execution order as
much as possible. According to the analysis in Sec. III, network
models exhibit different degrees of contention. Thus, we first
use a percentage threshold to split the inference requests into
high (#) and low (£) contention (also denoted by H and L).
To bound the radius of mutual influence, we define contention
window below.

Definition 4 (Contention Window). For each model j to be
pipelined on K processors, by looking forward, the contention
window spans from j to j + K — 1.

Denote |#;| and |£;| as the number of high and low
contention model slices in contention window j. Once the
number of high contention model slices is larger than two,
there would be a temporal overlap between two or more model
slices with high contention. For example, HH for K = 2; HLH,
HHL, LHH, HHH all have two high contention model slices for
K = 3, and so on. Thus, we seek to relocate a low-contention
model slices L so that the number of high contention is less
than two, which is illustrated by the next property.

Property 3 (Contention Mitigation). If v and v are the
indices of two H in #; and the contention distance is d = |v—u].
We need to relocate at least K —d number of L from £ to make
the number of high contention less than two.

Relocation via Linear Assignment. We transform such
contention mitigation problem into the classic Linear Assignment
Problem (LAP), i.e., relocate ¢ € L£; to H; such that the total
moving cost ¢;; is minimized,

[£]=1]H[-1 [£]-1 [H|-1
P3 : min E E cijTij, where E Tij = E Ty =1
i=0 j=0 =0

and x;; is a 0-1 decision variable. Note that the assignment cost
is calculated as,

o0, z’e[j—K+1j+K—1],
Cij = 7 —> |H‘j |'H|l >2 (10)
|7 —1i], otherwise.

It states when ¢ is either in the left or right contention window
of j; or after ¢ is assigned to 7, it leads to high contention. We
do not consider these ¢ € £ and set the ¢;; — oo; otherwise,
the cost is set to the contention distance between ¢ and j.
We can solve the problem by the Kuhn—Munkres Algorithm in
O(IMJ?) [36].

The entire procedure is visually illustrated in Fig. 5. For each
input sequence, @ slide the contention window to extract all
the neighboring H; @ calculate the relocation cost according
to Eq. (10); ® find the min-cost assignments so that the
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@ move CW to extract “neighboring” H

hlgh contentlon

hlgh contentlon Cs3 = Co3 = C57=Ce7 =

(@ Repeat until all H are interleaved

@ Relocate L to minimize cost

Fig. 5: Illustration of the contention mitigation algorithm.

Algorithm 2: Contention Mitigation

1 Input: Input sequence M, their contention intensity Cy, processors K,
function of Kuhn-Munkres Algorithm Fg ps(+).

2 Output: Contention-mitigated model sequence M.

30 >HULCM, {H; >2}vjem = Su. L — Si.

4 while S,Sy, # 0 do

5 foerESH,VJESL,z¢[]—K+1]+K—1]d
6 if z%\?—[]|:>|7-[1\>2then
7 | cij <o
8 else
| cij=1i—1l
10 @ = H;1) + Frm(SH, S, cij).-
1 7SLHSLfi,SH(—SHfj,|'Hj|<—'Hj|71.

12 return M.

total displacement cost is minimized by the Kuhn—Munkres
Algorithm; @ stop until all neighboring H are at least K apart
or there is no sufficient L for selection. The time complexity is
bounded by O(|M|?|H]) and the procedure is summarized in
Algorithm 2.

C. Vertical Alignments by Work Stealing

After we successfully re-arrange the input sequence, the final
step is to perform cross-stage alignment in the vertical direction
to minimize pipeline bubbles. Our main strategy is to identify
the critical path with the longest processing delay and utilize
work stealing to adjust workloads in neighboring stages in order
to amortize the pipeline bubbles. Work stealing is a common
technique in multi-core processing that decouples tasks from the
executing threads to allow work units to move between thread
contexts [37]. Here, if a bubble is present between the two
execution stages, the lesser would request additional work from
its next corresponding stage until the stages are re-balanced.

The main procedure consists of two phases: 1) Perform work
stealing within each contention window (CW) and slide it till
the end of the sequence; 2) Conduct local search to minimize
the tail bubbles. In 1), for models Mew € M, we first find the

critical path i, = argmax Zk 1 ). Then
i€EMew
we perform work stealing in a layer-wise granularity, e.g., if

Tl‘ +1 -T ZC > 0, we re-allocate layers from model slice M, “H
to M, ;C“ to so that T,zC_Jil ~ Ty°. The objective is to vertlcally
align the execution time across different stages so that the

Z(l;ﬂm U l;ﬂk+1*

pipeline bubbles are minimized for k = {1,--- , K},
K—ic k—1 ) ) ic—1 K—k
mmZ\Bkl =2 D ITEF - T+ 30 ) I - T
i=1 j=1 i=1 j=1

an
As shown in Fig. 6, this not only reduces under-utilization at
the beginning, but also gradually drains the workloads towards
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Algorithm 3: Vertical Alignment by Work Stealing

1 Input: Vk € K, ¢ € M, execution time T,:'(lpk7 oy lppyq,—1) from
Algorithm 1, output sequence M from Algorithm 2, contention
windows |[CW| of size K. .

2 Output: Updated partitioning P of M.

3 for 0 < u < |[M| do

4 My + |CW ]y
5 iceargmaxszzl Tillpgs s lppyr—1)
1€EMcw
6 for 1 <i< K —i.do
7 for 1 <j<k-—1do
8 Assign layers £ € M““ — MIMLI ) till
Let1 c
Tt — T >0

9 for 1 <i<i.—1do
for 1 <j<K-kdo

1 L Assign layers ¢ € M,Zf;;z — Mii:gl ) till
Tptt = Tie =0

2| ; —u+ K

13 return Updated partitioning P of M.

tail bubbles

e optimize tail workloads

0 work stealing to fill bubbles

Fig. 6: Example of the vertical alignment via work stealing. The
second model is the critical path and the arrows indicate the
flow of work stealing.

the end of the pipeline by filling the intermediate bubbles, which
in turn reduces the total makespan. In the second phase, different
from pipelined training with dependencies on the gradients [7],
[8], inference execution allows us to further reduce the bubbles
on the tail via re-allocating workloads by local search, e.g., a fast
greedy approach would be simply assigning all the workloads
to the fastest processor, or we can perform an exhaustive search
since the search space is only K.

Time Complexity. The time complexity of vertical alignment
is O(2 - nK + ‘&K‘ -K?) = O(IM|(n + K)). The analysis
takes the worst-case that in each CW, O(nK) number of layer
alignments are needed and the sequence consists of 24 = steps.
In summary, the total complex1ty of the HeterozPlpe planner
is O(|M|(nK 4+ n+ K) + |M|?|H|), where n represents the
(average) number of layers, K is the number of processors. We
can see that the overall time complexity is primarily determined
by the number of inference requests |M|, which is further
governed by how often the pipelining plan is made. In case of
more inference requests, the planner should be scheduled more
frequently to avoid enlarged search space.
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Fig. 7: Comparison of the overall performance from samples of 100 random model combinations on Snapdragon 778G,
Snapdragon870 and Kirin990 SoCs. The top and bottom charts represent Latency and Throughput, respectively. The rightmost
scatter plots compare Band and our scheme by showing the solution distributions from a random subset of 30% sequence

combinations.

VI. EXPERIMENTAL RESULTS
A. Environment Setup

Hardware. We employ three heterogeneous SoCs for our
experiments, which are representative across different types of
mobile devices.

< Kirin 990. The SoC contains a CPU with 2-core A76
@2.86GHz, 2-core A76 @2.09GHz, and 4-core AS5S5
@1.86GHz, a GPU with 16-core Mali-G76, and a NPU
with the DaVinci Architecture.

Snapdragon 778G. This SoC features a CPU with 1-core
A78 @2.40GHz, 3-core A78 @2.20GHz, and 4-core A55
@1.90GHz, and a GPU with Qualcomm Adreno 642L.
Snapdragon 870. It consists of a CPU with 1-core
A77 @3.20GHz, 3-core A77 @2.42GHz, and 4-core A55
@1.80GHz, and a GPU with Qualcomm Adreno 650.

We utilize the ADB interface to execute the program and
monitor the kernel events. Additionally, we bind the process
to CPU cores using the UNIX taskset command. The order
of the processors is arranged by computational capability from
high to low.

Software. We implement Hetero?Pipe and other bench-
marks in the MNN software library [38]. MNN is a versatile,
lightweight, industrial-grade deep learning framework that
supports both inference and training with a large variety of
operators. We cross-compile on ARMv8 with the Android NDK
r25c version using ARM NEON, OpenCL and the HiAl suite for
the CPU, GPU and NPU, respectively. We launch the pipeline
program under the Android /data/local/tmp folder from
the ADB Shell.

Inference Models. To simulate real applications, we consider
a combination of 10 representative DNNs: AlexNet, VGG16,
GooglLeNet, Inceptionv4, ResNet50, YOLOv4, MobileNetV2,
SqueezeNet, BERT and ViT. The collection scales from over-
parameterized convolution networks with large filters, branching
and residual connections, depth separable convolutions, and
object detection to the latest transformer-based architectures.
We use pre-trained models in their ONNX format and convert
them to MNN format with MNNConvert.

Baseline. We compare Hetero?Pipe with the following base-
lines.
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< MNN v2.6.0 [11]: since the CPU still outperforms the
embedded GPU in most mobile consumer devices, this
represents the vanilla CPU-centric implementation on the
Big cores.

Pipe-it [20]: it pipelines inputs across different CPU cores
for homogeneous DNNs. We adapt the core partitioning
strategy for heterogeneous DNNs and select the fastest core
combination of four Big and four Small cores to avoid
cache incoherence across the CPU clusters.

Band [21]: we implement the co-processor fallback mecha-
nism to migrate unsupported NPU operations to CPU/GPU.
Hetero?Pipe (No C/T): the proposed Hetero?Pipe without
considering contention mitigation and tail bubble optimiza-
tion.

B. Comparison of Overall Performance

First, we compare the overall performance of Hetero?Pipe
on three SoC platforms in Fig. 7 with the setup of four
processors (CPU Big cores, OpenCL GPU, CPU Small cores and
NPU) and various combinations of multi-DNN networks. The
system throughput is defined as the number of completed model
inferences per unit time: Throughput = # Model/Latency.

Compared to MNN [11], Hetero?Pipe accelerates inference
by 4.2x on average, achieving up to 8.8 speedup on the
Kirin 990 platform due to NPU acceleration. Compared to Pipe-
it [20], Hetero?Pipe accelerates inference by 2x on average,
achieving up to 3.7x speedup on the Kirin 990 SoC. It is
also observed that with particular contention mitigation and tail
bubble optimization, Hetero?Pipe outperforms the unoptimized
“No C/T” version by 1.3x on average.

Comparison to Band [21]. Band can be considered a
competitive SOTA scheme that orchestrates the fastest NPU
on-board. It prioritizes model inference on high-performance
processors based on operator supportability, and falls back
to secondary ones for unsupported operators which achieves
efficient parallel inference through dynamic processor switching.
The two scatter plots in Fig. 7 compare solution points between
Band and HeterozPipe. For clarity, we extract a random subset
of 30% model sequence to visualize the solution distributions.
On average, our scheme surpasses Band by 5% with less
solution variance (admittedly, Band is able to achieve better
performance in certain cases). Band can be regarded as a special
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pipeline design that also efficiently harnesses NPU for parallel
collaboration among heterogeneous processors. In general, the
two schemes are similar conceptually as they both take advantage
of heterogeneous processors. The difference resides in the
parallelism optimization as Band does not purposely optimize
pipelines. This may lead to bubbles and resource idling during
operator fallback whereas the following requests are far from
being aligned. On the system-level, because Band is fallback-
driven, it leads to constant new memory allocation and data
transfer, which may leave memory fragments that further limit its
sustainability in the long run. In our scheme, the NPU execution
stops and delegates to the next pipeline stage either because
of unsupported operators or because a model partition decision
has been made.

Exhaustive Algorithm

O Simulated Annealing Algorithm

= Hetero?-Vertical(No C/T)
Hetero?-Vertical

3150 wm Hetero’Vertical(No C/T)
mmm Hetero?-Vertical(No C)
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Fig. 8: Ablation studies of vertical optimization over 100
random model combinations. (a) Comparison with exhaustive
search, simulated annealing and no contention mitigation/tail
bubble optimization. (b) Average latency achieved by removing
components from Hetero?Pipe.

50

Kirin99

8

C. Ablation Studies for Vertical Optimization

The vertical optimization consists of several components. To
demonstrate their effectiveness, we conduct additional ablation
studies and compare them with exhaustive search and meta-
heuristics such as simulated annealing. Fig.8(a) shows 100
samples of random model combinations and we organize
the model sequences on the x-axis in an ascending order
of the latency values. Our scheme ranks very close to the
solution found by exhaustive search (only 4% away from the
optimality) and outperforms simulated annealing with much
lower complexity. Fig.8(b) further validates the consideration
of contention mitigation and tail bubble optimization with
progressive reduction of latency when both factors are accounted.
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Fig. 9: Visualization of memory frequency and footprint due to
pipeline executions on Kirin990. The upper and bottom plots

trace the memory frequency and available memory respectively.
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D. Memory Footprint

A side effect of pipeline execution on edge devices is the
increase of burden in the memory subsystems due to the
running multiple pipeline stages concurrently. On one hand, co-
execution demands full memory bandwidth, thus often throttling
the memory controller to the maximum memory frequency.
On the other hand, if the peak memory exceeds the physical
memory capacity, it leads to page faults, virtual memory
swapping, and substantial performance slowdown [22]. While
memory frequency is managed by the proprietary driver from
the vendor, it is essential to guarantee the peak memory is
under the physical memory capacity (Constraint (6)). Fig.9
demonstrates the memory frequency and usage on the Kirin 990
platform by building pipelines proportional to the FLOPs: large
models (BERT, ViT, YOLOv4) over 300 MB, medium models
(Inceptionv4, ResNet50, AlexNet) between 100-300 MB, and
lightweight models (SqueezeNet, MobileNetV2, GoogLeNet)
under 100 MB. We notice that single-stage execution on the
NPU does not require full memory bandwidth indicated by
frequency. Once the CPU/GPU are involved, memory frequency
is running at the maximum state. For the initial available
memory around 2.5GB, the 3-stage pipeline brings the available
memory down to 500 MB and adding one more large model
would likely overwhelm the capacity. Fortunately, our contention
mitigation mechanism could avoid concurrent executions of the
large models because the large models tend to cause higher
interference.

VII. CONCLUSION

This paper proposes Hetero?Pipe, a pipeline planner for
multi-DNN inference on the platforms with heterogeneous
processors under co-execution slowdown. We first characterize
memory interference for different models on the processors and
investigate through the performance monitoring module. Based
on the findings, we formulate the pipeline organization problem
into a two-step optimization with dynamic programming-based
model partition horizontally and work stealing across different
stages for load re-balancing vertically. Our extensive experiments
over a large collection of models on three representative mobile
SoCs demonstrate the effectiveness of the proposed mechanism
compared to the existing mechanisms.

VIII. APPENDICES

We follow up with more discussions and evaluations on a set
of interesting phenomenons and insights from our implementa-
tions below.

A. Search Space of Processor Pipelines

Consider three typical heterogeneous mobile processors: CPU,
GPU and NPU. The CPU consists of C} Big cores and C —
Cp Small cores; the GPU/NPU is considered as a single unit
and cannot be partitioned further on mobile devices. We first
calculate the number of possible partitions S, for a single model
in Eq. (12) with P stages and denote P’ = P — 2 as the number
of stages for the CPU cores where the two stages are reserved
for GPU and NPU.

ppax

Sp = (4DyD; + 3Dy + 3D;) + 1

min
Py

12)
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In-cluster contention on Kirin990
EWN YOLOv4

In-cluster contention on Snapdragon778G

Slowdown

BB-BB

S8-88

Fig. 10: In-cluster contention between CPU cores on Kirin990
and Snapdragon778G causes as high as 70% slowdown on the
performance cores, which is downplayed by [20]. “BB-BB”
represents when YOLOv4 and VGG-16 are co-executed on
the two separate Big cores, and so on for “SS-SS”, “BBB-B”
and “SSS-S”. To avoid contention during further partitioning of
the Big and Small cores, we consider all four Big/Small cores
together.

where,

Dy

Cy—1 D_ C—-C,—1

pP,—1) 7% \P'—P—1)
Po={l,---,C}, PP—P,={1,---,C—C},
PPt = max(1, P’ + C + Cy),
P = min(Cy, P’ — 1). (13)
P, and P’ — P, are the stages for the Big and Small cores,
respectively. D;, and D, are the combinations on the Big and
Small cores. For | M| models with n layers each, the entire

search space is,
n—1
(P - 1> 5.

Example. In a typical consumer device with an eight-core CPU,
a GPU and NPU, we identify a total of 449 feasible pipelines for
P between 2 and 10 from Eq. (12). Moreover, for MobileNetV?2
with 28 convolutional layers, there are over 3.6B distinct split
points from Eq. (14). For different models, e.g., {MobileNetV2,
VGGI16, Bert}, the search space grow exponentially.

Remarks on Intra-Cluster Contention. Different from [20]
that partitions the workloads on a per-core granularity, we
consider the per-cluster granularity of the four Big and Small
cores as a whole because our experiments indicate a large intra-
cluster contention that causes as high as 70% slowdown due to
conflicting L2 cache miss shown in Fig. 10. This simplification
helps reduce the search space.

M| C+2

s=113

i=1 P=2

(14)

B. Thermal Behaviors

We demonstrate complex thermal behavior of different
processors at run-time. As shown in Fig. 11, for continuous
inference workloads, the CPU reaches above 60°C with a
noticeable slowdown, while the GPU/NPU have much better
thermal controls within the 50°C' limit, partially due to lower
core frequencies. This observation is consistent with [39] which
found that GPU is less prone to throttling compared to the CPU.
To alleviate the thermal impact on processing speed, in this
work, we conduct all the experiments at the thermal limits when
frequency scaling and temperature have reached a steady state.

492

Thermal Behavior of Heterogeneous Processors
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Fig. 11: Processing latency of different models on heterogeneous
processors. The Big CPU cores are generally on par with
OpenCL GPU and the Small cores pose high performance
degradation. NPU has the fastest speed but very limited support
for a diverse set of operators [21].
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Fig. 12: Empirical relations between bubble size and overall
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C. Relations between Pipeline Bubbles and Latency

Our empirical evaluation indicates a general linear relationship
between the bubble size and the overall latency in Fig. 12 in
which the latency values are found by exhaustive search. The
multi-DNN sequence combinations determine the slopes of the
linear relation that corresponds to different bubble sizes when
various DNN models are co-executed.

D. Batching of Lightweight Models

In practice, we may have multiple requests from different
applications running lightweight models such as continuous
classification of video frames with MobileNetV2/SqueezeNet.
According to our experiment, the execution time of a single

CPU Big Core GPU OpenCL NPU DaVinci RTX4080 CUDA
£ 20 —e— Inceptionv4 £ 20 —e— Inceptionv4 /' £ 20 —e— Inceptionv4 £ 20 —e— Inceptionvé
£29] —— squeezeNet 229 —— squeezeNet £29] —— squeezeNet 229 —— squeezeNet
D15 D15 D15 D15
> > > >
10 210 10 210
2 2 2 2
S Ss S s 5/
0 5 0 15 5 0 15 o 5 0 15 5 0 15
Batch Size Batch Size Batch Size Batch Size

Fig. 13: Batch size can be used to align the execution time
of light/heavy-weight models. The vertical axis represents the
rate of change in inference latency as batch size increases. The
linear relation indicates that the computational resources are
being fully utilized. Due to limited on-chip memory in mobile
devices [32], the execution time climbs almost linearly with the
increased batch size.
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inference between such lightweight models against heavy-weight
models such as BERT is about 20-40x time difference, plus
excessive overhead from kernel launching and data transfer from
global memory to on-chip buffers while loading the model. Thus,
the vertical alignment of a single lightweight model is inefficient
and costly due to its short duration. A quick workaround is to
adopt batching to close the gap between light and heavy-weight
models, as well as hide the memory copy time of loading a single
model. Fig. 13 shows the experimental results of combining
inference requests into batches on different mobile processors
compared to the CUDA GPU. Due to limited on-chip memory,
the execution time can be modeled as an affine function regarding
batch size for appropriate coefficients calculated for different
processors.
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