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Abstract
While multi-modal features offer rich semantic signals to enhance
sequential recommendation systems, their integration with ID-
based embeddings remains challenging. Conventional fusion strate-
gies often degrade performance despite the semantic potential of
multimodal data. Through empirical analysis, we identify asymmet-
ric convergence dynamics between rapidly adapting ID embeddings
and slowly evolving modality representations as the fundamental
barrier. To address this, we propose DeCoRec, a novel framework
to decouple ID and modality optimization trajectories to prevent
gradient interference. To further reconcile ID and multi-modal
data, we introduce modality-aware interest clustering and cross-
modal contrastive learning to align semantic neighborhoods with
behavioral patterns. Extensive experiments demonstrate 5-7% im-
provements in NDCG/HiT metrics against the existing schemes and
particular robustness in cold-start scenarios. The code is available:
https://github.com/KIKIENAO/decorec
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Keywords
Sequential Recommendation, ID-Based Recommendation, Modality-
Based Recommendation

ACM Reference Format:
Zhaoqi Chen,Wanni Xu, Yunfeng Zhang, Yawei Hou, ZhenyuWen, andCong
Wang*. 2025. DeCoRec: Decoupled Collaborative Refinement for Multi-
Modal Sequential Recommendations. In Proceedings of the 33rd ACM Inter-
national Conference onMultimedia (MM ’25), Oct. 27–31, 2025, Dublin, Ireland.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3746027.3755475

*Correspondence to Cong Wang (cwang85@zju.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’25, Dublin, Ireland
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3755475

1 Introduction
Sequential recommendation (SR) systems aim to predict a user’s
next interaction by modeling dynamic behavioral patterns from
historical interaction sequences [12, 13, 23, 42]. Unlike collaborative
filtering, which relies on aggregated user-item preferences [11], SR
leverages temporal dependencies to capture evolving user inter-
ests [4, 19, 31]. This temporal awareness has made SR an indispens-
able part for real-world platforms from e-commerce (personalized
product feeds such as Amazon and Ebay) to streaming services
(next-video recommendations such as Youtube and TikTok).

Modern SR predominantly rely on ID-based recommendation [36],
where unique user/item IDs are converted into learnable embed-
dings. Despite their long-standing dominance, ID-centric approaches
suffer from a serial limitations of cold-start scenarios with sparse in-
teraction [6, 35], popularity bias of unfairness [1, 40], cross-platform
transferability due to non-shareable IDs [5, 32], and the isolation
from the advance of foundational models such as Transformers [2].
On the other hand, the recent advance in foundational models
has transformed modality representation with semantically rich
features to surpass ID embeddings, which allows models to infer
relationships beyond interaction patterns [14, 27, 33, 38, 39]. A
plethora of recent research aims to replace IDs with modal features
and improve their performance [33, 41], whereas in warm-start sce-
narios, ID-based approaches still outperform their modality-only
counterparts since IDs provide an explicit guideance of collabora-
tive relations [26].

A natural solution is to combine ID and modality features [7, 9,
10, 41]. Surprisingly, however, naive fusion strategies degrade per-
formance compared to ID-only or modality-only baselines, which
are attributed to the inconsistency between ID and modal embed-
dings [37], or their distinct rationales as symbolic identifier for ID
and fine-grained preferences for modal embeddings [39]. Differ-
ent from these views, our empirical study unveils a new insight:
naive multi-modal fusion introduces interference that disrupts col-
laborative signals, which could reduce accuracy by 3-10%. These
findings contradict the expectation that richer modality features
should enhance recommendations, which raises a critical question:
If multi-modal features are semantically powerful, why do they fail
to enhance SR when fused with IDs?

Different from [37], we identify asymmetric convergence as the
root cause. Intuitively, low-dimensional ID embeddings, distilled
from dense interaction patterns with structural cues [26], converge
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transformer block
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Occup.: Student
Prev. Order：#30236 

Hotpot is great

#30100

#30868 #32145

#32146 #32199

#30311 #30133 #30145

#30236#31355

Hotpot Dumpling Bread Shrimp TurkeyText: 

Text: Noodle Rice Ham Burger Pizza
Item ID: 

Item ID: 

Image: 

Image: User ID: 234
Age: 72
Occup.: Retired
Prev. Order：#30100

Text Embedding

ID Embedding 

ID Embedding 

Image Embedding
ID-Modal Fusion

Figure 1: An example of fusing modality and ID embeddings.

rapidly to stable collaborative representations. In contrast, modality
encoders – processing high-dimensional content like images or text
– require prolonged training to stabilize semantic relationships. Joint
optimization forces the model to reconcile conflicting objectives:
preserving fast-converging collaborative signals while adapting to
slow-evolving semantic patterns.

To address this, we propose Decoupled Collaborative Refine-
ment for Multi-Modal Sequential Recommendation (DeCoRec), a
framework designed to disentangle modality and ID features in SR.
Departing from the prior attempts that fix pre-trained modality
features [37], DeCoRec separates the optimization of modality and
ID parameters into distinct phases. The first phase trains modality
encoders exclusively on semantic sequences to build stable cross-
item relationships; the second phase freezes modal parameters and
refines ID embeddings with collaborative signals, thus preventing
gradient interference across modalities. To further bridge seman-
tic and structural gaps, we also introduce modality-aware interest
clusters through 𝑘-means grouping of enriched embeddings, fol-
lowed by cross-modal contrastive learning. This aligns semantic
neighborhoods with behavioral patterns and effectively guides the
model to prioritize recommendations within coherent interest do-
mains and avoid semantically inconsistent suggestions. Our main
contributions are summarized as follows:

✧ Motivation.We identify the gradient mismatch between ID and
modality features as the primary barrier to effective fusion, which
is overlooked in disentangling ID and modality [39]. To our best
knowledge, this is one of the few efforts that aim to reconcile ID
and multi-modality.

✧ Methodology.Wepropose DeCoRec, a decoupled training frame-
work that isolates modality and ID-based semantics into a two-
stage phased training. The framework supports synergistic inte-
gration of modality-interest clustering and cross-modal retrieval
to align modal interaction-based interest clusters and leverage
cross-modal information to enrich collaborative signals.

✧ Evaluation. Extensive experiments on diverse Amazon datasets
demonstrate that DeCoRec improves the performance up to 5-7%
in terms of NDCG/HiTmetrics compared to the benchmarks, with
particular robustness in cold-start scenarios compared to Unis-
Rec [15] and MissRec [33]. We also present ablation studies for
the modular design and visualization providing insights into the
interaction between collaborative and semantic signals.

2 Related Works
2.1 Pure ID-Based SR
Sequential recommendation aims to predict a user’s next interac-
tion based on their historical behavior. Early approaches such as
Markov chain-based models [10, 18] focus on capturing immediate

item-to-item transitions, whereas these methods are restricted to
low-order sequential patterns, and fall short to model complex,
long-range dependencies in user sessions. Thus, the subsequent re-
search shifts to RNN-based models [12, 13, 23] to encode sequential
dynamics. While RNNs improve performance by modeling higher-
order associations, their emphasis on strict temporal order makes
them susceptible to overfitting noisy or inherent randomness in
recommendation sequences.

Recently, transformer-based models such as Transformers4Rec,
BERT4Rec, and SASRec [4, 19, 31] are proposed. By leveraging
self-attention to capture long-range dependencies, these methods
become the mainstream SR due to their capacity to model com-
plex user behaviors effectively. Other approaches include graph [3,
25, 29] and diffusion-based models [24, 34]. However, purely ID-
based methods heavily depend on interaction frequency, sequence
patterns and are subject to problems of cold-start items or users,
so their performance is often bottlenecked by their inability to
leverage rich contextual signals.

2.2 Multi-Modal SR
The integration of multi-modal features (e.g., text, images, cate-
gories) has opened up new opportunities for enhancing SR. Modal
information not only provides rich semantic signals that comple-
ment sparse interaction data, but also enables inferring item re-
lationships beyond co-occurrence patterns. LATTICE utilizes the
latent structural similarity across modalities to refine item embed-
dings and enhance item representations [38]. Multi-modal data
enables finer-grained modeling of user preferences by introduc-
ing descriptive attributes [39], which helps mitigate ambiguity in
interaction sequences. MISSRec leverages multi-modal features
instead of relying solely on sparse, non-transferable ID features
via an interest-aware encoder-decoder [33]. UniSRec utilizes text
information to learn transferable representations across different
recommendation scenarios [14]. These efforts bypass the reliance
on explicit user IDs by representing items through their modal
features and predicting the next item based on semantic patterns
rather than item IDs alone.

Arguebly, modality-driven approaches still face limitations, since
item IDs remain critical for capturing latent information derived
from historical user-item interactions. The study in [37] demon-
strates that under warm-start scenarios, ID-based models like SAS-
Rec [19], DSSM [16] outperform their modality-only counterparts,
as IDs carry inherent collaborative relationships [26]. This high-
lights the indispensable role of ID embeddings.

2.3 Integrating ID and Modal Features for SR
Current research on integrating ID embeddings and multi-modal
features remains limited, with most methods adopting either decou-
pled or loosely coupled strategies [7, 26, 27, 39]. DIMO disentangles
ID and modal features through counterfactual inference and proxy
learning, decomposing recommendations into separate collabo-
rative (ID-driven) and semantic (modality-driven) pathways [39].
IDSF views ID embedding as subtle features to supplement mul-
timodal recommendation and employs attention mechanisms to
fuse structural (ID-based) and content-based (modal) signals [26].
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Figure 2: Divergent convergence dynamics between modal
and ID embeddings on Pantry and Scientific datasets.

ALIGNRec aligns modal and ID representations via cross-modal pro-
jection to unify their feature spaces [27]. However, these methods
overlook a critical factor of the disparity in convergence dynamics
between ID and modal parameters. Different from these works that
mostly focus on the feature level, we combine architectural and
feature-level enhancement to synchronize the convergence trajec-
tories of ID and modal parameters. The most relevant work to ours
is LGMRec [7] whereas their primary solution is an architectural
method. We posit asymmetric convergence as a more fundamental
underlying reason for why joint optimization is challenging.

3 Divergence between Modal and ID
Before we describe the details of our design, we first present the key
insights of the divergence between modal and ID information as the
primary cause of performance degradation. As illustrated in Fig. 2,
modality-only and ID-only models exhibit fundamentally different
optimization trajectories: ID-based models converge rapidly within
early iterations, reaching the peak performance around 5 iterations
followed by overfitting, while modality-based counterparts demon-
strate sustained performance gains throughout extended training.
This asymmetry in learning paces creates divergent optimization
objectives during the joint training process. To further validate this,
we examine through the lens of gradient dynamics.

Gradient Dynamics. Fig. 3 presents the trace of cosine simi-
larity in the process of training between the ID and modality em-
beddings. Fig. 3(a) looks into the first 50 training iterations of the
gradient similarity in the training of model. In contrast to the global
view of Fig. 3(b), we can see that ID and modal gradients turn
from the opposite directions to partially correlated as the training
progresses. Fig. 3(c) also validates the prior observation that ID
embeddings tend to converge fast within a few epochs as the gradi-
ent magnitude approches zero within 50 iterations while modality
embeddings converge much slower with the gradient magnitude
hovering above 0.25.

Joint Modality-ID Training.As a result of gradient divergence,
Fig. 4 shows that incorporating ID embeddings with modality fea-
tures degrades performance compared to modality-only inputs,
which contradicts conventional wisdom that ID features with struc-
tural cues should theoretically enhance multimodal representa-
tions [26]. We posit that the faster-converging ID component effec-
tively “locks” the model into suboptimal regions of the parameter
space before modality representations mature, thereby limiting the
overall performance. In addition, Fig. 4 also indicates that simple
linear projection layers are inadequate for modeling complex user
behavioral patterns (Modal+Linear) and a more delicate design
is needed to enhance expressiveness. In contrast to the previous
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Figure 3: Gradient divergence between modal-only and ID-
onlymodels: a) examining the cosine similarity in the first 50
epochs; b) cosine similarity over the entire course of training;
c) trace of gradient magnitudes.

studies, we attempt to leverage more complex adaptive structures
to fully exploit the potential of modality features. Next, we pro-
pose a new framework to decouple the mutual impact of gradient
interference between ID and modal embeddings.
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Figure 4: Naive integration of modal and ID embeddings
undermines the overall performance across different metrics
of HIT@10, NDCG@10 and MRR@10.

4 Designs of DeCoRec
In this section, we describe the designs of DeCoRec as formulated in
the following. Define a user setU and an item setX; and a modality
setM = {𝑣, 𝑡}. Here, 𝑣 and 𝑡 represent differentmodal features, such
as visual and textual features. The item ID embedding is represented
as E𝑖𝑑 = {e𝑖𝑑1 , . . . , e𝑖𝑑

𝑖
, . . . , e𝑖𝑑|X | }, with dimensions of R |X |×𝑑 , where

𝑑 denotes the embedding dimension. The itemmodal characteristics
are represented as E𝑚 = {e𝑚1 , . . . , e

𝑚
𝑖
, . . . , e𝑚|X | }, with dimensions of

R |X |×𝑑𝑚 , where𝑚 ∈ M represents different modal characteristics
and 𝑑𝑚 is the dimension of the modal characteristic.

4.1 Design Overview
Fig. 5 illustrates the main components of the proposed framework:
➊Co-occurrence Representation, which injects collaborative informa-
tion into different modal data (including image/text/IDs); ➋ Collab-
orative Interest Clustering, which refines modal-collaborative infor-
mation interest points through 𝑘-means clustering; ➌ Phased Train-
ing, that decouples gradient interference among different modali-
ties;➍Multi-modal Fusion to form the final sequence representation
for retrieving the next item of most interest to the user.
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Figure 5: The main procedures of DeCoRec: ➊ Co-occurrence Representation injects collaborative information into different
modal data (including image/text/IDs); ➋ Collaborative Interest Clustering refines modal-collaborative information interest
points through 𝑘-means clustering; ➌ (Two-Stage) Phased training decouples gradient interference among different modalities
that in the first stage, the ID embeddings are frozen and the modality embeddings are trained, and vice versa for the second
stage; ➍ Cross-Modal Retrieval forms the final sequence representation for retrieving the next item of most interest to the user.

4.2 Co-occurrence Representation
Sequential co-occurrence relationships refer to the collaborative
information related to user behavior. Since raw ID embeddings lack
explicit behavioral context and modal features ignore collaborative
patterns, we follow [21, 39] to construct a co-occurance scheme
that encodes how frequently items appear together in sequences,
modulated by their positional proximity. This is done via injecting
behavioral signals into the ID embeddings of items. For two items
𝑖, 𝑗 , the behavioral affinity score 𝑆𝑢

𝑖 𝑗
between them for user𝑢 decays

with their positional distance 𝐷𝑖 𝑗 ,

𝑆𝑢𝑖 𝑗 =

{ 1
𝐷𝑖 𝑗

if 𝑥𝑖 , 𝑥 𝑗 ∈ S𝑢 ,

0 otherwise,
(1)

We sum up the behavioral affinity scores 𝑆𝑢
𝑖 𝑗
between items 𝑖 and 𝑗

across all user sequences and item pairs, S𝑖 𝑗 =
∑
𝑢∈U 𝑆𝑢

𝑖 𝑗
. For layers

𝑙 ∈ L, the injection strength 𝜇𝑛
𝑙
is adaptively tuned to balance

behavioral and semantic signals,

𝜇𝑛
𝑙
= 𝜎 (W𝜇 · concat(E𝑛

𝑙
, S𝑙 )), 𝑛 ∈ {id} ∪M (2)

in which 𝜎 (·) is the sigmoid activation andW𝜇 are the model pa-
rameters to learn the influence of co-occurence patternsS𝑙 for layer
𝑙 . Unlike static fusion [33, 41], layer-wise gating prevents overly
noisy co-occurrence signals such that the higher layers (captur-
ing abstract patterns) receive smaller 𝜇𝑛

𝑙
and vice versa. Then, the

enriched embedding E
𝑛 is computed as,

E
𝑛
= E𝑛 + 1

|L|
∑︁
𝑙∈L

𝜇𝑛
𝑙
S𝑙E

𝑛
𝑙
, 𝑛 ∈ {id} ∪M . (3)

𝜇𝑛
𝑙
is an adaptive gating paramter controlling cross-layer signal

fusion. 𝑆𝑙 ∈ R |X |× |X | is the normalized co-occurance matrix for
layer 𝑙 . E𝑛

𝑙
∈ R |X×𝑑 is the input feature with co-occurence cues.

The modal features E𝑚 (𝑚 ∈ M) construct item-item graphs where
edges encode both semantic similarity and behavioral co-occurrence
and the ID embedding E

id integrate collaborative signals, that en-
ables robust next-item prediction even for cold-start items via be-
havioral propagation [21].

4.3 Collaborative Interest Clustering
The enriched modal representations E𝑚 ∈ R |X |×𝑑 exhibit item
similarities driven by two complementary factors: 1)Modal Affinity.
Items share intrinsic semantic attributes (e.g., visual appearance,
textual descriptions); 2) Collaborative Correlation. Items co-occur
frequently in user interaction sequences.

Cluster Centroid Computation. To exploit this duality, we
cluster E𝑚 to identify prototypical user interests that unify modal
and behavioral similarity. The integration of clustering aligns with
the core recommendation paradigm of suggesting items that are
either semantically analogous to interacted content or behaviorally
affiliated through historical co-occurrence [14]. The clusters act as
pseudo-labels that guide the model to focus on intra-interest item
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relationships during training,

C = K-Means
(
E
𝑚
, 𝑘

)
, C ∈ R𝑘×𝑑 . (4)

We apply 𝑘-means clustering [8] to E𝑚 and obtain 𝑘 interest proto-
types. Each centroid C𝑗 represents a latent interest combination of
modal and collaborative similarity.

Interest Alignment. For item 𝑥𝑖 , we assign it to the nearest
cluster centroid via,

Cinterest
i = arg min

𝑗∈{1,2,...,𝑘 }



E𝑖 − C𝑗




2 . (5)

Each item’s cluster assignment is mapped to a dense interest em-
bedding,

einterest𝑖 = MLP(Cinterest
𝑖 ), (6)

where MLP(·) is the multi-layer perceptron that nonlinearly projects
cluster indices to the recommendation space. For cold-start items
with sparse interactions, interest assignments inferred from modal
features could also stabilize collaborative signal propagation.

Visualization. Fig. 6 visualizes the effectiveness of clustering as
the introduction of clusters facilitates the discrimination of embed-
dings in representation space. Without clustering, those predictions
represented as the triangles become more difficult to distinguish
than the clustered ones. More evaluations are available in Sec. 5.3.
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With Clustered Embedding Without Clustered Embedding

Figure 6: Visualization of the effectiveness of interest cluster-
ing with T-SNE. In contrast to the “with clustering” approach,
the triangles represent the approach “without clustering”,
which becomes more difficult to distinguish.

4.4 Phased Training for Convergence
Alignment

A key novelty of our framework is the two-stage training scheme
that resolves the convergence speed mismatch between modality
encoders (slow, high-dimensional parameters) and ID embeddings
(fast, low-dimensional). Unlike joint training in prior work [37, 41],
which might risk modal gradient dominance destabilizing ID repre-
sentations, our phased approach explicitly separates modal stabi-
lization from collaborative fusion and prevents gradient conflict.

Stage 1: Model-Centric Stabilization. In the first stage, we
only use the modal data to anchor features for user behavior dy-
namics in order to avoid interference from the volatile ID signals.

S𝑚 =
[
e𝑚1 , e

𝑚
2 , . . . , e

𝑚
𝑛

]
, e𝑚𝑖 ∈ R𝑑 , (7)

where e𝑚
𝑖

is the modal feature of item 𝑥𝑖 . To ensure the transition
of features from the semantic space to the user behavior space, we
employ a modal adapter to project raw features into a latent space
and align with behavioral sequences via a Linear-ReLU-Linear
structure,

S̃𝑚 = W2 · ReLU (W1S𝑚 + b1) + b2, (8)
in which W1 ∈ R𝑑×𝑑ℎ and W2 ∈ R𝑑ℎ×𝑑 (𝑑ℎ < 𝑑) are weight matri-
ces to enforce dimensionality reduction and capture discriminative
behavioral patterns. b1 and b2 are bias terms. After adaptation, we
use a transformer encoder TRM(·) to process the adapted sequence,

S𝑚 = TRM
(̃
S𝑚

)
, h𝑚 = S𝑚 [−1] ∈ R𝑑 , (9)

h𝑚 is the hidden state capturing sequence-level intent.
Stage 2: Collaborative-Semantic Fusion. At this stage, we

integrate ID-driven collaborative signals without disrupting sta-
bilized modal representations: freeze the modal adapter and un-
freeze the ID embeddings. This combines stabilized modal features
with ID/interest signals, while ensuring behavioral semantics from
Stage 1 remain intact, whereas end-to-end finetuning may cause
inevitable feature drift of learned modal embeddings [17, 27].

Ŝm = S̃m︸︷︷︸
Stabilized Modality

+ Sid︸︷︷︸
Collaborative

+ Sinterest︸   ︷︷   ︸
Hybrid Intent

(10)

where Sid = [eid1 , · · · , e
id
𝑛 ] and Sinterest are from Section 4.3. After

processing through the transformer, we obtain the final representa-
tion of a single modality:

ĥ𝑚 = TRM
(̂
S𝑚

)
[−1], (11)

with the modal adapter frozen to preserve Stage 1 semantics.

4.5 Cross-Modal Information Retrieval
Existing fusion strategies focus on intra-item alignment [14], but
neglect intra-item collaborative patterns across modalities, which
limits their ability to generalize to sparse or cold-start scenarios.
To address this, we propose a cross-modal co-occurrence retrieval.
Unlike the traditional methods [10, 13, 18], our approach explic-
itly models how modalities interact at the system level to enrich
collaborative signals: 1) Cross-Modal Co-Occurrence. By retrieving
complementary information across modalities, we capture latent
user interest patterns that transcend single-modality representa-
tions; 2) Sparsity Mitigation. Cross-modal retrieval compensates
for missing or sparse data in one modality (e.g., few item images)
by leveraging richer signals from another (e.g., detailed textual
descriptions), effectively densifying the interaction graph. Next, we
present the loss formulation for cross-modal retrieval.

Loss Formulation. We propose a new contrastive-alike loss
function to reward the model for retrieving the correct item across
modalities while penalizing irrelevant items. For a user’s interaction
sequence S𝑚 (modality 𝑚 ∈ {text, img}), we compute similarity
scores between S𝑚 and all candidate item’s text/image embeddings
𝐸whole represent [𝐸text, 𝐸img] in the Model-Centric Stabilization
stage or [𝐸text, 𝐸img] in Collaborative-Semantic Fusion stage,

logits𝑚 =
ℎ𝑚 · 𝐸⊤whole

𝜏
, (12)
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where𝜏 (temperature) controlsmodality alignment strictness. Lower
𝜏 enforces hard alignment between exact matches, while higher
ones permit softer matches across semantically related items. De-
fine the target item 𝐼∗ (the next interacted item) by the user as the
positive samples. 𝐸txt (𝐼∗) and 𝐸img (𝐼∗) provide embeddings from
both modalities of text and image representations and all other
items’ embeddings are negative samples in 𝐸whole,

pos_logitstxt|img
𝑚 = logits𝑚 [𝐸txt|img (𝐼∗)] . (13)

To prioritize alignment within the current modality while still en-
couraging cross-modal co-occurrence, we downweight non-current
modality positives by a factor 𝛼 ,

pos_logits¬𝑚𝑚 = 𝛼 · pos_logits¬𝑚𝑚 , 𝛼 ∈ [0, 1] . (14)

If 𝑚 = txt, the image-positive score pos_logits¬𝑚𝑚 is scaled by 𝛼 .
The loss for modality 𝑚 combines weighted positive scores and
normalizes over all items I:

ℓ𝑚 = − log
(

exp(pos_logitstxt𝑚 ) + exp(pos_logitsimg
𝑚 )∑

𝐼 ∈I exp(logitstxt [𝐼 ]) + exp(logitsimg [𝐼 ])

)
(15)

and the total loss aggregates contributions from both modalities,
ℓ =

∑
𝐼 ∈I ℓ𝑚 . The effectiveness of cross-modal retrieval is evaluated

in Section 5.4.
Inference Stage. During the inference stage, we obtain the

final prediction score for an item by fusing inference results from
different modalities,

score𝑚 = softmax(ℎ𝑚, 𝐸𝑤ℎ𝑜𝑙𝑒 , 𝜏) (16)

score𝑚 (𝐼 ) = logits𝑚 [𝐼𝑚] + 𝛼 · logits𝑚 [𝐼¬𝑚], (17)

score(𝐼 ) = scoretext (𝐼 ) + scoreimg (𝐼 ) . (18)

5 Experiments
The experiment section aims to answer the following question:
✧ RQ1: How does DeCoRec compared to the existing techniques?
✧ RQ2 & RQ3: Are the interest clustering (RQ2) and cross-modal

retrieval (RQ3) effective?
✧ RQ4: Does our modular design consistently enhance the model

performance?

5.1 Experimental Setup
Our model is evaluated on five datasets, including “Industrial and
Scientific” (Scientific), “Prime Pantry” (Pantry), “Crafts and Sewing”
(Arts), “Musical Instruments” (Instruments), and “Office Products”
(Office), obtained from the Amazon review dataset [28], which is
a large-scale corpora of user-generated product reviews on Ama-
zon and widely utilized for recommendation system research. For
multi-modal inputs, we follow [33] to crawl relevant item images
and extract features as the input for the image modality. To avoid
interference, we perform filtering on the original dataset and ex-
clud entries with missing modalities. The relevant statistics of the
dataset is shown in Table 1. Similar to [15, 33, 42], we adopt two
standard metrics of Recall (R@k) and NDCG (N@k) to evaluate the
retrieval performance and set 𝑘 to 10, 50.

Dataset # Items # Interactions Sparsity (%)
Arts 9,438 154,642 99.927
Instruments 6,290 121,163 99.889
Office 16,629 400,208 99.960
Pantry 4,588 109,517 99.812
Scientific 1,586 16,784 99.639
Table 1: Statistics of pre-processed Datasets.

5.1.1 Experimental Details. We use CLIP-B/32 to extract image
and text features [30], and the corresponding [cls] token as the
modality representation of the content. We divide the dataset using
leave-one-out cross-validation into training, validation, and test
sets. During the experiment, we set the maximum length of the
user’s historical sequence to 50. For the training set, we apply data
augmentation using the standard sliding window technique and
Adam as the optimizer.

For the phased training: in the first stage, we train the modality
data until convergence, using the validation set to evaluate the
model’s performance. We employ early stopping when the loss on
the validation set converges on the last 10 trailing epochs and the
checkpoint is stored as the final model. In the second stage, we
introduce ID embeddings and keep the parameters of the modality
adapter frozen, which has been empirically validated to improve
the overall performance.

5.1.2 Baselines. We compare DeCoRec with the following base-
lines, which include various advanced ID-based and modality-based
SR models.

✧ SASRec [20]: Unidirectional self-attention architecture focusing
on short-term patterns through causal attention masks.

✧ BERT4Rec [31]: Employs bidirectional Transformer layers for
masked item prediction, capturing contextual dependencies in
the user sequences.

✧ UniSRec [15]: Universal sequence encoder using item text de-
scriptionswith parameterwhitening andMixture-of-Expert adapters
for cross-domain transfer learning.

✧ MISSRec [33]: Multi-modal pre-training framework integrating
visual-textual features via interest-aware discovery modules and
cross-platform contrastive alignment.

✧ MMMLP [41]: Multi-modal MLP framework combining ID-based
co-occurrence patterns and modality-aware features.

✧ DIMO [22]: Session-based model disentangling ID effects (collab-
orative signals) and modality effects (content features) through
dual-channel contrastive learning.

5.2 Main Results (RQ1)
Table 2 demonstrates DeCoRec’s superiority over six state-of-the-
art baselines across five Amazon datasets. Our model achieves the
best performance in 16/20 comparisons and the second in another
4 comparisons (a total of 20/20). First, we observe that modality-
enhanced models (the proposed DeCoRec, MISSRec [33], Unis-
Rec [15]) consistently outperform ID-only baselines (SASRec [20],
BERT4Rec [31]), which validates the necessity of modality features.
The 22% average NDCG@10 gap between DeCoRec and SASRec
underscores the important of semantic signals in mitigating interac-
tion sparsity. While MISSRec incorporates both text and images, the
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Dataset Metric SASRec [20] BERT4Rec [31] UnisRec [15] MissRec [33] MMMLP [41] DIMO [22] DeCoRec∗ Improv.

Scientific

Hit@10 0.1523 0.0751 0.1615 0.1660 0.1226 0.1506 0.1779 +7.16%
Hit@50 0.2923 0.1933 0.3286 0.3200 0.2220 0.3214 0.3559 +8.31%

NDCG@10 0.0724 0.0354 0.0809 0.0858 0.0786 0.0787 0.0897 +4.34%
NDCG@50 0.1023 0.0603 0.1166 0.1189 0.0998 0.1153 0.1292 +8.66%

Arts

Hit@10 0.1217 0.0865 0.1617 0.1613 0.1366 0.1197 0.1626 +0.56%
Hit@50 0.2163 0.1642 0.2839 0.2808 0.2291 0.1948 0.2872 +1.16%

NDCG@10 0.0758 0.0550 0.0891 0.0980 0.0955 0.0745 0.0962 -1.92%
NDCG@50 0.0960 0.0714 0.1153 0.1237 0.1152 0.0906 0.1193 -3.55%

Instruments

Hit@10 0.1269 0.1062 0.1543 0.1580 0.1405 0.1558 0.1585 +0.32%
Hit@50 0.2158 0.1883 0.2658 0.2704 0.2335 0.2706 0.2737 +1.1%

NDCG@10 0.0910 0.0796 0.0998 0.1112 0.1049 0.0933 0.1110 -0.1%
NDCG@50 0.1100 0.0970 0.1237 0.1349 0.1246 0.1185 0.1336 -0.7%

Office

Hit@10 0.1290 0.0948 0.1394 0.1411 0.1335 0.1378 0.1415 +0.28%
Hit@50 0.1958 0.1455 0.2161 0.2221 0.1991 0.2221 0.2252 +1.39%

NDCG@10 0.0885 0.0673 0.0934 0.0911 0.0900 0.0936 0.0938 +0.21%
NDCG@50 0.1028 0.0781 0.1098 0.1084 0.1000 0.1105 0.1118 +1.18%

Pantry

Hit@10 0.0488 0.0305 0.0755 0.0757 0.0467 0.0729 0.0797 +5.28%
Hit@50 0.1366 0.1060 0.1872 0.1849 0.1293 0.1799 0.1920 +2.56%

NDCG@10 0.0209 0.0145 0.0340 0.0357 0.0243 0.0345 0.0380 +6.44%
NDCG@50 0.0395 0.0303 0.0577 0.0587 0.0417 0.0571 0.0618 +5.28%

Table 2: Performance comparison on different datasets. The Best and Second Best values are marked in Red and Blue. Improve-
ments indicate the gap between the Best and the second Best schemes.

marginal gain over text-only UniSRec on the “Office” datasets sug-
gests textual descriptions with rich brand/specification details pro-
vide stronger intent signals than visual features for tangible goods.
This aligns with e-commerce user behavior where textual search
predominates visual browsing. DIMO’s inconsistent performance
reveals the pitfalls of radical ID-modality separation. Our phased
integration proves to be more effective as DeCoRec maintains 89%
of MISSRec’s visual advantages while adding 11% collaborative
signal gains through controlled ID injection.

5.3 Collaborative Interest Clustering (RQ2)
We validate the design of modality-interest clustering in Section 4.3
by designing a recall model that uses sequence information to recall
the next item a user may be interested in. We recall items using
different perspectives of the model: 1) Interest Perspective. For the
items in the interaction sequence, we recall the top-𝑘 items with the
highest co-occurrence scores for each item; 2) Modality Similarity
Perspective. For the items in the interaction sequence, we attempt
to recall the top-𝑘 items that have the highest modality similarity
to each item; 3) Modality-Interest Perspective. For the items in the
interaction sequence, we recall items that satisfy both the interest
perspective and modality similarity perspective simultaneously. By
adjusting the top-k parameter to maintain a consistent number of
predictions across experiments, we enable a direct comparison of
prediction rates between different model variants under equivalent
prediction volumes. Table 3 shows that the precision rate of the
modality-interest perspective is 1.3-1.7× higher than the single
interest and modality similarity perspective. This is because pure
modality similarity suffers from semantic ambiguity that visually
similar pantry items may serve divergent culinary purposes and it
may also miss functionally equivalent substitutes. The intersection
of modality-interest perspective could filter a large portion of false
positives by enforcing both semantic relevance and co-occurrence

likelihood. This explains the importance of combining both types
of information for recommendation.

Dataset View Recall Count Predicted Count Precision Rate

Scientific
Modal Similarity 255 33,149 0.00769

Interest 320 29,898 0.01070
Modality-Interest 354 26,854 0.01318

Pantry
Modal Similarity 594 147,981 0.00401

Interest 631 141,906 0.00446
Modality-Interest 845 143,559 0.00589

Table 3: Recall results for different views in the “Scientific”
and “Pantry” datasets

5.4 Cross-Modal Information Retrieval (RQ3)
To validate the effectiveness of cross-modal retrieval in Section 4.5,
we conduct additional experiments comparing 4 different variants:
(1) image (visual embeddings only), (2) text (textual embeddings
only), (3) intra (single-modal retrieval without cross-modal interac-
tion), and (4) cross (multimodal retrieval-enhanced training). Fig.7
reveals that visual embeddings generally underperform compared
to textual counterparts across most scenarios. Furthermore, naive
summation of prediction logits from different modalities occasion-
ally fails to deliver expected performance. These findings emphasize
the critical importance of modality-aware information integration
and empirically confirm the superiority of the proposed cross-modal
retrieval mechanisms over the simplistic fusion approaches.

Uni-Modality Enhancement.We also find that the power of
the proposed cross-modal retrieval could even enhance single-modal
inference (text or image only). As shown in Fig. 8, both visual and
textual modalities exhibit consistent improvements across all the
datasets, with relative gains reaching up to 12.4% on the Instru-
ments dataset. This enhancement arises from that fact that different
modalities share latent representations of user preferences through
common abstraction layers in our model. User interactions inher-
ently reflect interest alignment with specific product characteristics,
whether conveyed through uni-modal visual appearance or textual
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Figure 7: Comarison of cross-modal information retrieval
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descriptions. Our analysis reveals that strong negative perceptions
towards either modality (e.g., unfavorable product images or de-
scriptions) typically prevent interaction occurrences.

Cold-start Scenarios. To evaluate the multimodal utilization
capabilities in cold-start scenarios, we conduct experiments compar-
ing the performance improvement of different multimodal models
using SASRec [20] as the baseline in Fig. 9. Cold users are defined
as the bottom 40% quantile by interaction count. We did not artifi-
cially corrupt modal features or test varying modality missing rates,
focusing on performance with naturally sparse user interaction
data. The results demonstrate that DeCoRec exhibits observable
advantages under cold-start conditions compared to UnisRec [15]
and MissRec [33]. This is because: 1) our framework captures user
interests from different perspectives using cross-modal retrieval,

which boosts the migration of user interest signals across differ-
ent modalities, thereby obtaining more representative sequential
embeddings; 2) the architectural design with complete modality
decoupling, which injects collaborative signals through contrastive
learning, which further improves the cold-start performance.

5.5 Ablation Studies (RQ4)

Method Scientific Arts
Hit@10 NDCG@10 Hit@10 NDCG@10

Linear Adapter + w/o CI 0.1612 0.0817 0.1440 0.0831
Linear Adapter 0.1629 0.0816 0.1540 0.0858
w/o Collaborative Information 0.1680 0.0859 0.1544 0.0887
w/o Phase 0.1650 0.0805 0.1424 0.0778
w/o Frozen 0.1687 0.0867 0.1547 0.0865
w/o cluster embedding 0.1762 0.0878 0.1590 0.0925
DeCoRec* 0.1779 0.0897 0.1626 0.0962
Table 4: Ablation studies on Scientific and Arts datasets.

We evaluate the following architectural variants,
• linear adapter+w/o collaborative information: train the
model using conventional linear modality adapters without col-
laborative signals.

• linear adapter: train themodel with conventional linearmodal-
ity adapters incorporating collaborative information.

• w/o collaborative information: train exclusively on modal-
ity data without collaborative signals.

• w/o cluster embedding: remove cluster features during second-
stage training.

• w/o frozen: without freezing the parameters in modal adapter
during the second stage.

• w/o phase: Baseline model trained without the phased two-stage
training framework.
As shown in Table 4, comparedwith conventional linear adapters,

more sophisticated adaptation structures enable superior transfer of
modality information from semantic to user behavior space. Even
when incorporating ID features – which substantially enhance
model performance – variants employing linear adapters remain
outperformed by counterparts utilizing more complex adaptation
architectures. This empirical evidence substantiates the necessity
of adopting the non-linear adaptation structures (i.e. Linear-ReLU-
Linear in Eq. (8)).

Furthermore, the performance degradation observed in w/o frozen
variants validates the criticality of our phased training paradigm.
The inherent heterogeneity between modality and ID embeddings
persists, even when employing phased integration of ID features.
The experimental outcomes from w/o cluster embedding high-
light the efficacy of modality-interest cluster features, while simulta-
neously reinforcing the importance of modeling both collaborative
and modality signals jointly.

6 Conclusion
This paper proposes DeCoRec, a novel SR framework that effectively
integrates ID-based signals and modality features by addressing
their asymmetric convergence dynamics. Through the pipelines
of co-occurrence-enhanced representation learning, two-phase de-
coupled training, and cross-modal interest alignment, DeCoRec
achieves substantial improvement in recommendation accuracy
over the benchmarks while significantly enhancing cold-start per-
formance and training stability.
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