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Abstract—Energy is an essential, but often forgotten aspect in
large-scale federated systems. As most of the research focuses
on tackling computational and statistical heterogeneity from
the machine learning algorithms, the impact on the mobile
system still remains unclear. In this paper, we design and
implement an online optimization framework by connecting
asynchronous execution of federated training with application
co-running to minimize energy consumption on battery-powered
mobile devices. From a series of experiments, we find that co-
running the training process in the background with foreground
applications gives the system a deep energy discount with
negligible performance slowdown. Based on these results, we first
study an offline problem assuming all the future occurrences of
applications are available, and propose a dynamic programming-
based algorithm. Then we propose an online algorithm using
the Lyapunov framework to explore the solution space via the
energy-staleness trade-off. The extensive experiments demon-
strate that the online optimization framework can save over
60% energy with 3 times faster convergence speed compared to
the previous schemes.

Keywords-Asynchronous federated learning; on-device deep
learning; energy-efficiency; power-aware online optimization.

I. INTRODUCTION

Our planet is in danger. Among a variety of causes, AI
plays an unequivocally negative role to accelerate the emis-
sion of carbon dioxide and irreversible climate change. As
deep learning is increasingly deployed in large-scale distribut-
ed systems, their energy footprint is growing at an unprece-
dented, breathtaking rate [1]. Recently, Federated Learning
rises as a promising computing paradigm that allows par-
ticipants to learn a collaborative model in privacy-preserved
manner [2]–[5]. However, by pushing neural computations to
the multi-core CPUs [7], its energy implication is far from
clear on battery-powered mobile devices [8]: high-intensity
neural computation quickly drains the battery and frequent
charge/discharge also shorten the battery lifetime, and their
disposal ultimately becomes an environmental liability.

The classic federated learning originates from the principles
of synchronous Stochastic Gradient Descent (Sync-SGD) in
cloud computing, where all the participants proceed in lock-
step and their parameters are averaged at the parameter
server. It is well-known that such simple migration is subject
to the computational heterogeneity in mobile environments,
vastly due to the segmented mobile hardware market and
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vendor-supplied drivers. Worst-case stragglers (slowest work-
ers) could be orders of magnitude slower than the average
execution whereas the majority of the computing power is
underutilized, especially when the stragglers are experiencing
heavy thermal throttling and user interference [6]. Further,
Sync-SGD does not provide the temporal flexibility of coor-
dination and slow convergence further exacerbates the energy
consumptions in the system. Asynchronous training (ASync-
SGD) is a competitive solution to tackle computational het-
erogeneity [9] but its potential is yet to be fully explored in
federated learning [13]. ASync-SGD allows fast participants
to proceed in lock-free steps while the global parameters
are exchanged and kept with the most updated local ones.
Without such barrier from the stragglers, more updates can
be made and the wall-clock convergence time is reduced.
Unfortunately, most of the research in Sync-SGD [2]–[5] and
ASync-SGD [9]–[11], [13] lie in the confined areas of ma-
chine learning and optimization theories, but the interaction
to the underlying system is not fully explored, particularly for
achieving energy-efficient computation.

In this paper, we aim to optimize the energy expenditure
of federated learning tasks by taking advantage of application
co-running opportunities and asynchronous execution. The
design stems from the pervasive ARM CPU microarchitec-
ture, which features the big.LITTLE cores [14] to tackle
multi-tasking with energy-efficiency: the big cores of high
throughput for foreground applications and the little cores of
low power consumptions for system and background process-
es. To avoid interfering with the normal usage, the training
threads can be designated as a background service and only
called once a set of conditions such as networking, battery
energy conditions are met. As validated in our experiments,
once the training threads of high parallelization are running
in the background (dispatched to the little cores by the
kernel scheduler), simultaneous execution of a foreground
application gives the entire system a deep energy discount
(about 30-50%) compared to running the foreground appli-
cation and training separately, with negligible performance
impact measured by Frame per Second (FPS). Combined with
ASync-SGD, it gives the flexibility to defer gradient updates
until a foreground application takes place.

A seamless integration of the system dynamics with the
upper-level machine learning algorithm faces tremendous
challenges. The success of asynchronous training relies on
well-managed staleness in the system, that the stale updates



from the stragglers should not diverge too much from the
current directions [10], [13], i.e., the staleness is bounded
with low variance. Hence, the first challenge comes from the
inevitable staleness in the system while waiting for better
co-running opportunities, not only because of the difficulty
to quantify gradient staleness, but also how to formulate
them into the optimization. Second, since the patterns and
future occurrences of user application are unknown, the
optimization need to make real-time decisions based on
the known priori. Third, how those control decisions would
propagate upwards and affect the global model convergence
and wall-clock training time. To tackle these challenges, we
first study a basic offline scheduling problem assuming the
access to all the future occurrences of the applications. We
adopt a recently proposed metric called gradient gap to
measure the difference between model parameters in their
norm magnitude [30], [31], and formulate the offline problem
into a Knapsack Problem [26], with a pseudo polynomial-time
dynamic programming solution. Then we further propose an
online optimization algorithm based on the Lyapunov frame-
work [27] to explore the two-way trade-off between energy
and staleness, which in turn implies convergence speed and
wall-clock training time. The framework is proved to achieve
the [O(1/V ),O(V )] energy-staleness trade-off, which only
requires the current information of system dynamics and
queue backlogs.

The contribution of this work is many-fold. First, motivated
by a series of key findings in real experiments, we leverage
ASync-SGD and system-level opportunities for energy op-
timization of federated training tasks on edge devices. To
the best of our knowledge, this is one of the few works
that integrate the high-level machine learning algorithms with
the low-level system dynamics on consumer’s edge devices.
Second, we formulate both offline and online optimization
problems and design an efficient online scheduler while
ensuring bounded staleness in the long term. Finally, we
conduct extensive evaluations on a mobile testbed with 4
types of devices using the CIFAR10 dataset [33]. The re-
sults demonstrate over 60% energy saving compared with
FedAvg [2] and 3× faster convergence speed.

The rest of the paper is organized as follows. Section
II discusses the background and related works. Section III
motivates this work and defines the system model. Sections
IV and V describe the framework for offline and online
optimization. Section VI implements the framework on edge
devices. Section VII evaluates the proposed framework and
Section VIII concludes this work with future directions.

II. BACKGROUND AND RELATED WORKS

A. Asynchronous Federated Learning

Sync-SGD. The state-of-the-art Federated Learning estab-
lishes on synchronous SGD, where local workers proceed
with a barrier until all the workers finish their local train-
ing [2]. As pointed out in [3]–[5], this simple migration is
subject to extensive heterogeneity in mobile edge systems

due to the diverse computational capability, network con-
nectivity/bandwidth and user behaviors. [3] develops a new
aggregation rule to allow local variations such as the number
of epoches and optimizers used by different participants. [5]
analyzes the convergence instability due to stragglers and
proposes a mechanism to correct those diverging gradient
updates. [4] adds a proximal term to the objective to manage
heterogeneity associated with partial information, when the
straggler’s updates have been dropped out. These works aim
to improve the computational efficiency of Sync-SGD while
preserving the statistical stability.

ASync-SGD is a natural way to tackle computational
heterogeneity, and its original version can be traced back to
HOGWILD! [9] in multicore systems. Multiple threads are
allowed access to the shared memory and update the model at
will. Considerable efforts have been devoted to understanding
and mitigating staleness [10], [11]. [10] adopts the Taylor
Expansion and Hessian approximation to compensate the
delay from stale gradients, while avoiding the complexities
from the high-order terms. [11] introduces a regularized term
to reduce the variance due to staleness. Though asynchrony
introduces race conditions, it is proved to achieve optimal
convergence rate at a much faster speed [9], mainly due to
more number of updates are now being conducted. Some
works also partially contribute the statistical efficiency to the
implicit momentum introduced from the stale gradients [12].

Momentum plays an important role to facilitate conver-
gence. The update is simply an exponentially weighted
average that continuously adds a portion of the previous
momentum vector vt−1 to the current vector vt plus the
fraction from the current gradient vector st,

vt = βvt−1 + (1− β)st, θt = θt−1 − ηvt (1)

then the model parameters θt are updated according to the
learning rate η. Here, the stale gradients can be thought as the
previous gradient vectors vt−1 that can dampen oscillations
along the way to the minima. Thus, it is interesting to see
that the benefits and drawbacks of staleness actually co-exist,
but such contradiction and its theoretical implication are still
not fully understood at this stage [13]. Most of the federated
research aims at improving the Sync-SGD or ASync-SGD
algorithms, but overlooks important aspects from the system,
such as energy-efficiency on battery-powered edge devices.
This work differs from a large body of existing works to
combine ASync-SGD with system-level opportunities and
reduce energy footprint in federated systems.

B. Energy Optimization

The efforts of energy optimization on mobile devices has
been revolving around software and hardware components to
elongate battery lifetime, e.g., dynamic voltage and frequency
scaling, resolving “energy bugs” from unexpected energy con-
sumption [16] and coalescing packets to reduce tail energy on
the wireless network interface [17], [18] using the Lyapunov
framework [27]. For on-device training [7], delegating the
long-running, training workloads as a background service is



a viable way to avoid interrupting normal usage. However,
its performance is still unclear since the mobile systems are
built with event-driven, user-centric designs to render the best
performance for the foreground applications. Fortunately, the
big.LITTLE architecture extends the capacity to handle con-
current low-intensity workloads on the more energy-efficient
cores [14]. Since a running foreground application would
have already activated shared resources on the big cores
and the background processes are typically dispatched to the
little cores, co-running training with applications could take
advantages of such energy disproportionality [19]. Similar
to packet coalescing [17], [18], this idea of task bundling
dates back to piggyback sensing activities with applications
such as web browsing and phone calls [20]. However, these
early works cannot be readily applied to federated learning
to achieve the energy-staleness trade-off as well as bounded
staleness with statistical stability. The closest works to ours
are [17], [18] that adopt the Lyapunov framework to achieve
energy-delay trade-offs. This paper takes a step forward to
consider gradient staleness induced by delayed execution
and attempts to fill the gap between the machine learning
algorithms and mobile systems for optimal energy efficiency.

III. MOTIVATION AND SYSTEM MODEL

A. Preliminary Experiment

We motivate the design by conducting some prelimi-
nary power measurements on the HiKey 970 Development
Board [21] and Pixel2 smartphone (see Sec. VI for im-
plementation details). Assuming the user is going to run
an application at a certain time, we compare the power
consumption of two approaches: 1) schedule training as a
service in the background, independently from the upcoming
application (separate). 2) schedule the training task to ex-
ecute together with the foreground application (co-running)
and the application also stops when training finishes. Since
applications have diverse resource demands and patterns of
user interactions, we choose some popular applications from
Google Play as shown in Fig. 1. To verify that co-running
does not lead to noticeable slowdown, we also perform some
experiments on Pixel2 to see the rendering effects perceived
by the user as measured in Frame Per Second (FPS) in Fig.
2. The important observations are summarized below.

Observations 1. Compared to separate scheduling, co-
running offers 35-50% energy saving. We notice that the
little cores designated for executing the training task typically
have 95-98% utilizations, whereas the big cores have 30-50%
utilization depending on the foreground application.

The energy saving originates from the asymmetric CPU
microarchitecture. Though the big/little core clusters have
their own cache hierarchies, the memory bandwidth is shared.
If the memory resource is already activated by the highly
paralleled neural operations on the little cores and kept at
certain power state, foreground applications executed on the
big cores should not elevate the power state too much on
the shared resources. Thus, co-running typically offers a
substantial energy saving compared to separate executions.
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Fig. 1: Power consumption of different schedules (a) Pixel2
(b) Hikey970 Dev. Board.
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Fig. 2: Performance impact measured by FPS while co-
running training tasks with (a) Angrybird (b) Tiktok.

This is also validated by more experiments with the homo-
geneous cores in Nexus 6 device as resource contention on
the same cluster degrades the energy saving percentage (see
more details in Sec. VII).

Observations 2. Co-running might lead to slowdown to the
training tasks depending on the intensity of the foreground
applications. For some lightweight applications such as news
and web browsing, the training task does not exhibit any
slowdown; for intensive applications such as gaming, we
notice about 10-15% slowdown due to resource contention
since a higher priority is given to the foreground applications
by design. However, co-running still provides an overall
energy saving despite of slightly elongated execution time.

Observations 3. Co-running does not have noticeable
slowdown for the foreground applications, as the average FPS
stays steadily around 60 and 30 frames/s shown in Fig. 2.

B. System Model

A device pulls the current model from the parameter
server when it becomes available depending on the network
condition or battery energy. Training is either immediately
scheduled or postponed until an application co-running oppor-
tunity. If the decision is co-running, the power consumption
is P a

′

i on the i-th device; otherwise, separate executions of
training and application take P bi and P ai respectively1. The
execution time of training is di at the i-th user. For simplicity,
it is assumed that the application would last for the same
time duration of the training task. After the local epoch is

1The power consumption of training is stable as the CPU typically stays
at the maximum frequency during training. For applications, the power
consumption fluctuates due to user interaction and frequency scaling. Thus,
we measure the average power consumption as shown in Table II.
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finished, the model is pushed to the server to update the global
parameters and ready to be downloaded by other participants
in the following time slots. We formally define the lag and
gradient gap to quantify gradient staleness.

Definition 1. (Lag) The lag lτ is defined as the number of
updates from other users that have been made to the global
model within the time interval [t, t + τ ]. t is the initial time
when the user receives the model from the server and t +
τ is the time that the user finishes training and applies the
parameters to the global model.

Sync-SGD guarantees the gradient aggregations are aligned
in lock-step so lτ = 0. For ASync-SGD, Fig.3 shows an
example of three users i, j, k and the control decision for i is
co-running at time ta when the application arrives. Users j
and k immediately perform training without waiting for the
applications and finish before t + τ . Therefore, during the
time interval of [t, t+τ ], there are lτ = 2 updates made from
other users j and k to the global model, whereas the model
update at t + τ is computed from a stale version at time
t. Using the metric of lag alone cannot precisely quantify
the difference between the two updates. Thus, we introduce
another definition.

Definition 2. (Gradient Gap) The gradient gap g(t, t+ τ)
can be calculated by the norm difference of the parameters
θt and θt+τ [30], [31],

g(t, t+ τ) = ‖θt+τ − θt‖2 , (2)

We adopt the efficient Linear Weight Prediction [32] to
estimate the global parameter θt+τ in the future time t+ τ ,

θt+τ = θt − η
1− βlτ
1− β vt. (3)

η is the learning rate. β and vt are the momentum coefficient
and vector defined in Eq. (1). Plugging Eq. (3) into Eq. (2),
we have

g(t, t+ τ) =

∥∥∥∥η 1− βlτ
1− β vt

∥∥∥∥
2

. (4)

IV. OFFLINE SCHEDULING PROBLEM

In this section, we first study an offline solution assuming
that all application occurrences are known, which serves as
an optimal solution and baseline for the online algorithm
proposed next.

Problem Formulation. Energy optimization aims to
achieve two conflicting goals to maximize the energy saving
and avoid staleness. Given the application arrivals, the goal
is to maximize the sum of energy saving from all the users:
decide whether to co-run training with application for each

user. Denote the number of users by n. For the i-th device,
the energy saving si = P bi + P ai − P a

′

i if the decision is to
co-run with application (decision variable xi = 1); otherwise
the energy saving is 0 (xi = 1).

P1: max

n∑
i=1

sixi (5)

s.t.
n∑
i=1

gi(ti, ti + τi)xi ≤ Lb, (6)

xi ∈ {0, 1}. (7)

Constraint (6) imposes that the sum of gradient gaps is
bounded by Lb and (7) makes xi 0-1 valued. This can be
considered as a Knapsack Problem [26], which maximizes
the total value of items under a weight capacity and our
problem maximizes the energy saving under the staleness
bound Lb. Since the problem is NP-complete, it can be
efficiently solved by utilizing the optimal sub-structure with
dynamic programming. The equation of the maximal energy
saving Si(y) is,

Si(y) =


Si−1(y), 0 < y ≤ gi(ti, ti + τi)

max
{
Si−1(y), Si−1(y − gi(ti, ti + τi)) + si

}
,

gi(ti, ti + τi) ≤ y ≤ Lb.
(8)

A key difference from the original Knapsack solution is that
gi(ti, ti + τi) is computed based on the lag lτi , which in
turn, depends on the decisions of other users - this creates a
looping situation. We know that, in the worst case, the lag lτi
is bounded by n − 1 because the rest of devices could have
all made their updates within τi. To tighten this, we further
reduce this value as described in the next lemma. This is
because given all the beginning time, application arrival and
training duration, for each device, some of the rest devices
should be out of the training interval and do not count towards
the lag. This allows us to obtain a tighter upper bound on lτi
without knowing the control decisions in advance. As long as
this upper bound is within Lb, we have a feasible, sub-optimal
solution.

Lemma 1. Given the beginning time ti, application arrival
time tai and duration of training di for user i, the lag for i is
bounded by,

lτi ≤
n−1∑
j=1

(
1(taj + dj ∈ [ti, ti + di] ∨ [tai , t

a
i + di])

∨ 1(tj + dj ∈ [ti, ti + di] ∨ [tai , t
a
i + di])

)
, (9)

in which ∨ denotes the logical “or” of the two time intervals
and 1(·) is one if the training ends in one of the time intervals.

Proof: It can be proved by considering all possible
decisions for each pair of i and j = {1, · · · , n − 1}. For
i, it has two scheduling possibilities: 1) execute training at
ti and end at ti + di (the interval of [ti, ti + di]); 2) co-
run training with application arrival at tai and end at tai + di
(the interval of [tai , t

a
i + di]). Meanwhile, any other j has the

similar possibilities to end at tj + dj or taj + dj . If any of



Algorithm 1: Offline Algorithm
1 Input: app. arrival time ti, training execution di ∀i,

zero-valued matrix S of size n× Lb
2 Output: scheduling decisions xi and maximum energy saving.
3 Initialize S0(y) = 0, y ≥ 0.
4 for i = 1 to n do
5 for j = 1 to Lb do
6 Estimate gj(tj , tj + τj) with Eq. (9) and Eq. (4).
7 if y ≤ gi(ti, ti + τi) then
8 Si(y)← Si−1(y).

9 else
10 Si(y)←

max
{
Si−1(y), Si−1(y − gi(ti, ti + τi)) + si

}
.

these intervals from i and j has overlaps, the gradient gap is
increased by one and summed over all n− 1 devices.

Based on Lemma 1, the offline solution is summarized in
Algorithm 1 with a time complexity of O(nLb), and will
serve as a baseline for the online algorithm discussed next.

V. ONLINE SCHEDULING

Offline scheduling assumes the future application arrival
as a priori. In this section, we propose an online scheduling
with the Lyapunov framework that only relies on the current
observation. We consider a task queue for the entire system
as defined below.

Definition 3. (Queue Dynamics). The task queue represents
the number of users waiting to be scheduled. The arrival of
users can be considered as a random process A(t). The queue
backlog will increase by A(t) = n if a number of n users are
ready to start training at t. If m users finish their training in
a time slot, the queue backlog is reduced by b(t) = m.

Assume time is equally slotted with the length of td.
The system makes a control decision α(t) at time t. The
energy consumption Pi(t) of the i-th device depends on
how training is scheduled and the current application status
s(t) = {‘app’, ‘no app’}, i.e., Pi(t) = Pi(α(t), s(t)):

Pi(t) =


P a

′
i td, α(t) = ‘schedule’, s(t) = ‘app’

P bi td, α(t) = ‘schedule’, s(t) = ‘no app’

P ai td, α(t) = ‘idle’, s(t) = ‘app’

P di td, α(t) = ‘idle’, s(t) = ‘no app’.

(10)

According to the experimental measurements, P a
′

i > P ai >
P bi > P di . The corresponding service rate for i is2,

bi(t) =

{
1, α(t) = ‘schedule’

0. α(t) = ‘idle’
(11)

and the service rate in the system is b(t) =
n∑
i=0

bi(t). The

gradient gap is,

gi(t, t+ τi) =


∥∥∥∥η 1−βldi

1−β vt

∥∥∥∥
2

, α(t) = ‘schedule’

gi(t− 1, t+ τi − 1) + ε. α(t) = ‘idle’
(12)

2To simplify the analysis, we take an approximation here to make the
actual service and deduction of queue length at t+ di to be effective at t.

If the decision is to schedule training, the gap is computed
using Eq. (4) with lag ldi during the execution time of di;
if the decision is to remain idle, the gap is cumulative from
the previous slot plus a small time-averaged gap increment
ε, which estimates the impact on the gradient gap for each
idling time slot. The sum of gradient gaps is G(t, t + τ) =
n∑
i=0

gi(t, t+ τ).

Problem Formulation. Our goal is to minimize the time-
averaged energy consumption of training tasks in the system
of n users,

P2: lim sup
T→∞

1

T

T∑
t=1

n∑
i=1

E{Pi(t)} (13)

s.t.

lim sup
T→∞

1

T

T∑
t=1

n∑
i=1

gi(t, t+ τ) ≤ Lb (14)

Eq. (14) guarantees that the sum of gradient gaps from all
the participants is bounded in a time averaged sense. P2 can
be transformed into the queue stability problem under the
Lyapunov optimization framework. Given the arrival rate A(t)
and service rate b(t), the queueing dynamics is,

Q(t+ 1) = max
(
Q(t)− b(t), 0

)
+A(t) (15)

with the initial Q(0) = 0. We define a virtual queue H(t) for
constraint (14),

H(t+ 1) = max
(
H(t) +

n∑
i=1

gi(t, t+ τ)− Lb, 0
)

(16)

and the initial H(0) = 0. We concatenate the actual and
virtual queues into Θ(t) = [Q(t),H(t)], define the Lyapunov
function L(Θ(t)) as the queue congestion of the backlogged
training tasks,

L(Θ(t))
∆
=

1

2
(Q(t)2 +H(t)2), (17)

and the Lyapunov drift function ∆(Θ(t)) as:

∆(Θ(t))
∆
= E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (18)

It represents the change in the Lyapunov function in time
slot t representing the scalar volume of queue congestions.
The new optimization problem is to minimize the drift-plus-
penalty:

P3: min ∆(Θ(t)) + V E{P (t)|Θ(t)} (19)

V is the control parameter to balance between energy and
staleness. Following the Lyapunov framework, the key is
to obtain the upper bound of the drift as described in the
following Lemma.

Lemma 2: Given the queue backlogs Q(t), arrival rates
A(t) and service rate b(t) and the gradient gaps, we have the
following upper bound for the drift-plus penalty term,

∆(Θ(t)) + V E{P (t)|Θ(t)} ≤ B + V E{P (t)|Θ(t)}+
Q(t)E{(A(t)− b(t)|Θ(t)}+H(t)E{G(t, t+ τ)− Lb|Θ(t)}

(20)



TABLE I: List of important notations of device i.

Notation Definition
P a

′
i , P

d
i Average power consumption of training/application co-running, and idling.

P bi , P ai Average power consumption of separate executions of training and application.
gi(t, t+ τ), G(t, t+ τ) Gradient gap between time t and t+ τ and the sum of gradient gaps from all the devices.
α(t), s(t) Control decision {“schedule”, “idle”}, application status {“app”, “no app”}.

where B = 1
2 (A2

max + B2
max + G2

max + L2
b) is a positive

constant. The proof can be found in Appendix X.
Our algorithm observes the current queue backlogs of

Q(t), H(t) and application status s(t) to make a decision of
α(t)

∆
= {‘schedule’, ‘idle’} that minimizes the R.H.S. of the

drift bound Eq. (20), which is equivalent to the objective in
Eq. (19).

min

(
V

n∑
i=1

Pi(t)−Q(t)

n∑
i=1

bi(t) +H(t)

n∑
i=1

gi(t, t+ τi)

)
(21)

This formulation makes online decisions based on the current
observations and does not need a-priori knowledge of the
arrival rates. With the information of application usage, a
centralized implementation can be conducted in O(n) at
the parameter server. However, since application usage are
considered as private and their patterns can be used to
re-identify specific users [28], centralization carries certain
privacy risks.

A. Distributed Implementation

The minimization of Eq. (21) can be achieved in a distribut-
ed manner via appropriate information exchange between the
server and the users. We design distributed implementations
into the Lyapunov framework that can mitigate the privacy
leakage of application usage to the parameter server. In time t,
each user minimizes Eq. (21) from the control decision space
based on status of application usage and queue backlogs, thus
the application usage si(t) is not leaked to the server. In the
last term of Eq. (21), the user computes the gradient gap
gi(ti, ti + τi) according to Eq. (2). If the decision is “sched-
ule”, the number of updates in the time interval of [t, t+ di]
can be supplied by the server with the estimated arrival time
of the running tasks; otherwise, the gap accumulates from the
previous value plus a small increment according to Eq. (12).
Hence, for each user i, the decision making fully depends on
its own status except the lag value supplied from the server,
which reveals little information about application usage com-
pared to the centralized implementation. The procedures are
summarized in Algorithm 2 with a computational complexity
of O(1) at each user and communication overhead of O(n)
at the server.
B. Illustration of Control Decisions

In the objective of Eq. (21), H(t)
n∑
i=1

gi(t, t + τ) can be

viewed as a penalty term when there are backlogs in the
virtual queue. When there is no backlog (Q(t), H(t) = 0), we
only have the first term in Eq. (21) so the control decision
is to always set the device to idle. This matches with the
intuition to wait for better co-running opportunities.

Algorithm 2: Distributed Online Scheduling Algorithm

1 Input: Queue backlogs Q(t) and H(t), control
parameter V , and action space Ω, learning rate η,
momentum vector v.

2 Output: Scheduling decisions ∀i.
3 for i = 1 to n do
4 Send duration di to the server, and receives lag ldi

from the server.
5 Estimate gi(t, t+ τi) with Eq. (4).
6 αi(t)←

arg min
Pi,bi,gi

V Pi(t)−Q(t)bi(t) +H(t)gi(t, t+ τi).

7 Inform control decision αi(t) to server.

8 Server: Update Q(t), H(t) according to Eqs. (15) and
(16) respectively according to α(t).

No Staleness from the Virtual Queue. There could be
cases that there are queue backlogs in Q(t), but for the virtual
queue H(t), the cumulative gradient gap has not exceeded the
bound Lb, i.e., H(t − 1) +

∑n
i=1 gi(t − 1, t + τ − 1) ≤ Lb.

Hence, H(t)
∑n
i=1 gi(t, t+τ) = 0 and we derive the decision

of,

αi(t) = arg min
αi(t)

{
(V P a

′
i t−Q(t), V P ai t), s(t) = ‘app’

(V P bi t−Q(t), V P di ), s(t) = ‘no app’
(22)

The decision can be made by simply observing Q(t): for
s(t) = ‘app’, the decision is to co-run if Q(t) ≥ V t(P a

′

i −
P ai ); otherwise, the decision is idling. Similarly, for s(t) =
‘no app’, the decision is to execute as a background process
when Q(t) ≥ V t(P bi − P di ) or set to idle otherwise. As a
result, the controller would wait until the queue length reaches
a certain level.

With Gradient Staleness. When H(t)g(t) > 0, the penalty
term H(t)g(t) is active so the control decision accounts for
possible staleness.

αi(t) = arg min
αi(t)



(
V P a

′
i t−Q(t) +H(t)

∥∥∥η 1−βlτ
1−β vt

∥∥∥
2
, V P ai +

H(t)
(
gi(t− 1, t+ τ − 1) + ε

))
, s(t) = ‘app’(

V P bi t−Q(t) +H(t)
∥∥∥η 1−βlτ

1−β vt

∥∥∥
2
, V P di +

H(t)
(
gi(t− 1, t+ τ − 1) + ε

))
, s(t) = ‘no app’

(23)
The relevant control decisions can be made by observing
Q(t), H(t) and compute the rest of the values in Eq. (23).



C. Optimality Analysis

The optimality of the problem is derived in Theorem 1.
Theorem 1. Let L(Θ(t)) defined by Eq. (17) and

L(Θ(0)) = 0. P ∗ is the optimal power consumption. For
constants B, V ≥ 0, the queues of Θ(t) are mean rate
stable and the time-averaged power consumption and queue
backlogs are bounded by:

lim sup
T→∞

1

T

T−1∑
t=0

E{P (t)} ≤ B

V
+ P ∗ (24)

lim sup
T→∞

1

T

T−1∑
t=0

E{Θ(t)} ≤ B

ε1
+
V (P ∗ − P )

ε1
(25)

The proofs are detailed in Appendix X-B. The performance
bounds Eqs. (24), (25) demonstrate an [O(1/V ),O(V )]
energy-staleness trade-off: by arbitrarily increasing V , we can
make B

V → 0 and the time-averaged power consumption close
to the optimal value, whereas the staleness grows linearly with
V .

VI. SYSTEM IMPLEMENTATION

To conduct neural net training on Android, we adopt a Java-
based Deep Learning framework called DL4J [22], which
provides seamless integration with the Android OS. The back-
end neural computations are supported by OpenBLAS cross-
compiled for the ARM platforms. We pre-load the CIFAR10
dataset [33] into the flash storage of the phone and retrieve
in batch size of 20. The Training App is implemented using
the Android JobScheduler framework designed for long-
running operations in the background without interfering with
the foreground applications. Conditions such as networking
connectivity (Wifi/4G), device status (idling or charging)
and execution time window can be specified to offer fine-
grained control. Once the job scheduler is started using
onStart, a new thread is created to initialize the neural
network in the device’s memory. We enable the largeHeap
to give the App 512MB memory to avoid memory errors.
The number of CPU cores designated for background ser-
vices is specified by the vendor, which can be found in
/dev/cpuset/background/cpus. E.g., Pixel2 utilizes
the two little cores and Nexus6P, Hikey970 only run on the
one little core and the rest of the three little cores are reserved
for system background process. Note that the default kernel
(e.g., CPU affinity, priority, frequency scaling) is used and
no root access is required throughout the paper. We set the
number of training threads to 2 or 1 according to the vendor
specifics, because a large value would conversely lead to
potential contentions to keep cache coherence and ultimately
slow down computations.

The Android kernel might kill the background training pro-
cess to save memory and optimize battery lifetime, particular-
ly when the neural network involves intensive computations.
We do not find the service being killed while running LeNet-5,
but introducing more convolutional layers with large filter size
would invoke the automatic background limitation because
those layers are the major resource consumers. In practice,

there also exists a few “diehard” tricks such as escalating
the app priority, service binding, etc [34]. We intend to
incorporate some of these methods in the future, whereas a
fundamental solution to this problem from the Mobile OS is
out of the scope of this paper.

The communication part is handled by the Retrofit Frame-
work from Sqaure [35], which easily packages asynchronous
HTTP requests to the Python-based HTTP server. For Async-
SGD, once a device completes a local epoch, it creates a
Retrofit FileuploadService to upload the local mod-
el of 2.5 MB with meta information (device ID, round
#) to the server. The server replaces the current copy of
the global model upon receiving it. When the device be-
comes available, it downloads the current model using the
FileDownloadService as a starting point for the next
local epoch.

VII. EVALUATION

Testbed/Parameter Settings. The evaluation is conducted
across a dynamic set of mobile devices from different ven-
dors: Nexus 6/6P, HiKey970 Dev. Board and Pixel2.

A. Energy Measurement
First, we measure the energy consumptions of different

control decisions as shown in Table II: training only (1st row
- considering training also as an app), application only (1st
col.) and co-running (2nd col.). To mitigate the chances of
breaking the devices while removing the battery and screen
connectors, we use a combination of software profilers: Trep-
n [23] and Snapdragon Profiler [24] with the Monsoon Power
Monitor [25]. Trepn is an old version for the last generation
of Snapdragon chipsets (Nexus6/6P) and the newer version
of Snapdragon Profiler supports the newer architectures of
Pixel 2. For non-Snapdragon chipset (Hikey970), we directly
power the development board with 12V DC input from the
Monsoon Power Monitor.

We measure the system-wide energy consumption from the
device which includes all the system background threads. To
reduce the variances, we disable all irrelevant applications
that might have processes lingering in the background. We
choose a number of 8 popular applications that users usually
spend considerable time. The percentage of energy saving is

calculated as, 1− Pa
′

i ta
P bi tb+P

a
i ta

(notations from Eq. (10)).
We notice that the newer generations of devices offer

much higher energy saving ratio across all the applications
(30-50%) and a slightly increased execution time due to
contentions of memory bandwidth. However, for the older
chipset such as Nexus 6 with four homogeneous cores, co-
running only offers marginal energy improvements depending
on the application. Some applications even result an energy
surge due to contention of cache resources, which further
leads to CPU throttling and elongated training time. In these
cases, the online controller is expected to avoid co-running.

B. Simulation Evaluation
Evaluation Settings. We set the probability of application

arrival to 0.001 in each time slot, i.e., an average of 1 app



Nexus6 Nexus6P Hikey970 Pixel2

Apps app co-run time saving(%) app co-run time saving(%) app co-run time saving(%) app co-run time saving(%)

Training 1.8 – 204s – 0.9 – 211s – 7.87 – 213s – 1.35 – 223s –
Map 3.4 3.5 274s 26% 0.5 1.3 225s 3% 8.82 9.42 186s 47% 1.60 2.20 196s 30%
News 1.7 2.2 239s 32% 0.44 1.2 362s -24% 9.17 9.76 210s 43% 1.82 2.40 197s 28%
Etrade 1.4 2.4 236s 17% 0.48 0.96 228s 27% 8.50 9.15 195s 47% 1.72 2.23 206s 30%
Youtube 0.5 1.9 284s -4% 0.53 1.2 220s 14% 9.15 11.45 210s 33% 2.04 2.21 226s 35%
Tiktok 1.6 2.3 296s 18% 1.0 1.1 675s 14% 11.0 11.2 271s 35% 2.37 2.52 212s 34%
Zoom 1.2 2.1 370s 4% 1.4 1.6 340s 18% 7.89 8.53 209s 46% 2.57 3.11 206s 23%
CandyCru 1.3 2.3 997s -39% 0.7 1.3 280s 9% 11.1 11.26 233s 38% 2.89 2.92 199s 34%
Angrybird 2.5 2.8 400s 18% 1.1 1.2 620s 15% 10.1 10.7 200s 42% 2.86 2.88 285s 26%

TABLE II: Averaged energy measurements - battery power (W) and execution time (s) running LeNet-5 of CIFAR10 dataset.
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Fig. 4: Energy consumption and trade-offs (a) Energy consumption vs. V ; (b) Queue length Q(t) vs. V ; (c) Virtual queue
length H(t) vs. V ; (d) Energy-staleness trade-off with different staleness bound Lb.
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Fig. 5: Comparison of convergence speed and gradient staleness (a) trace of gradient gap from Sync-SGD and ASync-SGD and
the proportionality between lag and gradient staleness; (b) convergence speed of different schemes; (c) wall-clock convergence
time to reach different accuracy objectives; (d) trace of gradient gaps from individual users.

arrival for every 1000s. The application is chosen uniformly
randomly from the 8 representative applications with the
running time measured in Table II. We set the number of
users to 25 (equal partition of the CIFAR10 dataset) and
each user randomly picks a device from the testbed. The
total training time is set to 3 hours and each time slot is
1s. We compare the online algorithm against Sync-SGD [2],
offline scheduling (Knapsack Problem) and the fixed policy
of immediate scheduling, which runs the background training
immediately when a device is available regardless of the
application arrivals. We set the look-ahead time window of
Knapsack evaluation to 500s with Lb = 1000, which invokes
the offline algorithm every 500s.

Comparison of Energy Consumption. Fig. 4(a) compares
the energy consumption of different scheduling policies.
Immediate scheduling serves as an upper bound of energy
consumption as it quickly turns on training regardless of

the application arrival. In contrast, with the relaxed staleness
bound Lb = 1000, the Knapsack offline solution acts almost
equivalently to a greedy scheme that is always waiting for
co-running opportunities, thus incurs the minimum energy
consumption. Reducing the value of Lb would elevate the
horizontal line of the offline solution. The online optimization
evolves in the space in between: as V grows, the energy
consumption quickly drops and slowly approaches the offline
solution around 200KJ, with a diminishing marginal gain
when V becomes large. The energy consumption stabilizes
within an approximation factor of 1.14 to the offline solution
and 66% energy savings compared to immediate scheduling
and 63% compared to Sync-SGD [2]. Adjusting the staleness
bound Lb implies different levels of tolerance to staleness.
With a larger Lb, more devices are put into the idling mode
waiting for applications, thus the energy consumption is
lower.
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Fig. 6: Impact of application arrival rate on (a) energy
consumption; (b) testing accuracy with scarce application
arrivals.

Figs. 4(b)(c) show the queue backlogs Q(t) and H(t),
which reflect the opposite of energy consumption in Fig.
4(a). Both Q(t) and H(t) increase linearly after V > 104

and this matches with Theorem 1 of Eq. (25). Fig. 4(d)
further validates the [O(1/V ),O(V )] energy-staleness trade-
offs as the attempt of energy reduction in the systems would
ultimately lead to congestion of the queues (high staleness and
less update). An optimal choice of V calls from the balance
between energy and queue length backlogs – V around the
value of 4000, since further increasing V beyond V > 104

would have marginally reduced energy saving compared to
the increase of queue length.

Gradient Staleness and Convergence. Since the control
decisions further propagate upwards to affect the machine
learning algorithms, the overall performance should be also
measured in terms of how fast the model converges and
the wall-clock time to reach a certain accuracy level. For
ASync-SGD, the speed of convergence is dominated by: 1)
the number of meaningful updates contributed by individual
participants in fixed time intervals; 2) the accumulation and
variance of gradient staleness. Fig. 5(a) depicts the trace of
gradient gaps of Sync-SGD and ASync-SGD when we fix
the online algorithm with V = 4000 and Lb = 500. The
minimum values of Sync-SGD are sampled at the time of
aggregation (model averaging), which follow a monotonically
declining trend. Because of that, the gradient gaps from
the local updates mostly stay in a narrow range and the
variance is small. In contrast, the gradient gap from ASync-
SGD forms an upward trend, especially at the beginning and
the sideway movements in the later iterations lead to more
fluctuations during convergence compared to Sync-SGD. The
lower subplot also demonstrates a positive correlation be-
tween the simple count of updates (lag in Def. 1) and the
gradient gap measured in norm difference between model
parameters. Since the difference between local parameters
tends to increase with more iterations, the same lag value
could have different impact on staleness in different stages of
training. To this end, gradient gap provides a more accurate
measure for staleness.

Fig.5(b) shows the convergence of different approaches.
If the objective for the model is to reach 0.5 accuracy,

the online scheme only lags the immediate scheduling by
1000s, but offers almost 60% energy saving and both schemes
ultimately converge to the same range of accuracy. The offline
and Sync-SGD fall far behind mainly due to insufficient
number of updates from the users. To compare the wall-lock
training time more closely, we record the time for different
schemes to reach 55%, 50%, 45% and 40% testing accuracy
in Fig.5(c), by varying the random seeds to generate different
random permutations of devices and application types. Since
the testing accuracy of Sync-SGD has plateaued around
50%, it never reaches 55% during the 3-hour time frame.
Similar to the previous results, Sync-SGD and offline scheme
both result in the largest convergence time with different
accuracy objectives. Immediate scheduling offers the fastest
training with much higher cost of energy, especially when the
accuracy objectives are lower (0.45, 0.4). The online scheme
is capable of achieving a reasonable trade-off between energy
consumption and training time.

Fig.5(d) shows the trace of gradient gaps for each indi-
vidual user during training. As expected, the variance of the
immediate scheduling is the smallest and the offline scheme
results high variance in gradient staleness, which may lead to
fluctuations of the testing accuracy. The variance of the online
scheme evolves moderately in between as it does not either act
too conservatively to withhold the users or too aggressively
to activate them.

Impact of Application Arrival. Our strategy relies on
the intensity of application usage for energy saving. We
further evaluate the impact of different application arrival
rates varying from 10−4 to 0.2 per time slot, especially
when the applications are scarce. Fig. 6(a) shows the ap-
plication arrival rate vs. energy consumptions. With more
running applications, the general energy consumption follows
an increasing trend for all three schemes. Immediate schedul-
ing is independent of application arrivals and the energy
saving comes from the coincident co-running. In contrast,
the online scheme is able to utilize the application arrival
more wisely as we can see the initial gap from immediate
scheduling is large. As the application rate rises, co-running
quickly saturates and the online scheme has degraded into
the immediate scheme. Because the offline scheme foresees
all the co-running opportunities, it is able to achieve the
lowest energy consumption when applications are scarce but
will aggressively schedule with the applications when the
arrival rate increases. Due to the random arrivals, the energy
consumption has more variance with a larger arrival rate. As
application usage depends on a variety of contextual cues such
as time and location [29], it is highly possible that there is
few application usage. Fig. 6(b) shows the impact on testing
accuracy when applications are scarce. We can see that there
is no noticeable accuracy degradation for the online scheme.
Once the cost of the queue backlogs increases, the online
scheme is able to switch back into the immediate scheme to
clear the queue congestions. Thus, the offline scheme may
offer better energy efficiency for different application rates,
but the control decisions generate a negative feedback on



the upper level convergence and testing accuracy when the
applications are scarce. The online scheme provides more
flexibility to adapt different application arrivals.

Energy Overhead. The online scheme examines Eq. (21),
which involves lightweight computation on the little cores.
The energy overhead is shown in Table III, which is below
10% in each time slot. To reduce the overhead, we can
adjust the scheduling granularity. E.g., instead of making
a decision in each time slot, we can enlarge the decision
intervals, whereas this might miss co-running opportunities
if the interval is larger than the application execution time.
Due to space limit, we will demonstrate such trade-off in an
extended version of this work.

Nexus 6 Nexus 6P Pixel 2
Power(idle) 0.238 0.486 0.689
Power(comp.) 0.245 0.525 0.736
Overhead (%) 3.0% 7.4% 6.3%

TABLE III: Energy overhead of online optimization (W).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we combine ASync-SGD and application co-
running to minimize energy consumptions of federated tasks
on mobile devices. We motivate this work by real measure-
ments and illustrate the fundamentals of energy saving. Then
we develop the offline and online schemes to explore the
energy-staleness trade-off with low computational overhead.
Our extensive evaluation demonstrates that the online opti-
mization achieves over 60% energy saving compared to the
benchmarks, and only 15% away from the offline solution.

The proposed mechanism can adapt to different diurnal and
nocturnal application usage patterns by taking advantage of
the common temporal activities from the users, while keeping
the devices in low power state during the rest of the time.
Though we only demonstrate the convergence empirically, in
principle, the theoretical convergence is guaranteed given a
bounded delay of gradients [36]. The Lyapunov framework
manages the delay from the virtual queue bounded by the
gradient staleness Lb in Eq. (14). We defer the rigorous
theoretical proofs to the future works.

IX. ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their
insights and detailed comments, and the support from the U.S.
National Science Foundation under grant number 2152580
and 2007386.

X. APPENDIX

A. Proofs of Lemma 2

Applying Eq. (17) to Eq. (18), we have,

Θ(t) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}

=
1

2
E{Θ(t+ 1)2 −Θ(t)2}

=
1

2
E{Q(t+ 1)2 −Q(t)2 +H(t+ 1)2 −H(t)2}

(26)

Since max2{x, 0} ≤ x2, from Eq. (15) and Eq. (16) we have,

Q2(t+ 1) +H2(t+ 1) ≤ Q2(t) + (A(t)− b(t))2 +

2Q(t)(A(t)− b(t)) +H2(t) +G(t)2 + 2H(t)G(t) + L2
b

(27)

From (26),
Θ(t) ≤ B + E{Q(t)(A(t)− b(t))|Q(t)}+ E{H(t)G(t)|H(t)}

(28)
where B = 1

2 (A2
max+B2

max+G2
max+L2

b). Amax, Bmax and
Gmax are the maximum arrival, service rate and gradient gap
in the system. Thus, Eq. (28) completes the proof of Lemma
2.

B. Proofs of Theorem 1
For the optimal decision α∗(t) that can stabilize the queue,

E{P (α∗(t))} = P ∗. (29)

Since we can adjust the control decisions, there must exist
ε1, ε2 > 0 so the difference between the service and arrival
rates of the actual and virtual queues are larger than ε1, ε2
respectively (considering Lb as the fixed service rate of the
virtual queue H(t)):

E{bi(t)−Ai(t)|Q(t)} > ε1 (30)
E{Lb − gi(t, t+ τ)|H(t)} > ε2 (31)

Plugging Eqs. (30) and (31) into Eq. (20),
∆(Θ(t))+V E{P (t)|Θ(t)} ≤ B+V P ∗−ε1E{Q(t)}−ε2E{H(t)}

(32)
Taking the summation over t ∈ {0, · · · , T − 1},

T−1∑
t=0

∆(Θ(t)) +

T−1∑
t=0

V E{P (t)|Θ(t)} ≤ T (B + V P ∗)

−
T−1∑
t=0

(ε1E{Q(t)}+ ε2E{H(t)}) (33)

Plugging Eq. (18) into Eq. (33), and dividing both sides by
T · V ,

E{L(Θ(T − 1))− L(Θ(0))}
TV

+
1

T

T−1∑
t=0

E{P (t)} ≤ B

V

+P ∗ − ε1
TV

E{Q(t)} − ε2
TV

E{H(t)} (34)

Since L(Θ(0)) = 0, when T →∞, we can simplify Eq. (34)
as,

lim sup
T→∞

1

T

T−1∑
t=0

E{P (t)} ≤ B

V
+ P ∗ (35)

The time averaged queue length can be derived by dividing
εT ,

1

T

T−1∑
t=0

E{Θ(t)} ≤
B + V (P ∗ − 1

T

T−1∑
t=0

E{P (t)})

ε

−
(
T−1∑
t=0

ε1E{Q(t)}+ ε2E{H(t)})

εT
+

E{L(Θ(0))}
εT

(36)



Taking the limits of T →∞,

Θ = lim sup
T→∞

1

T

T−1∑
t=0

E{Θ(t)} ≤ B

ε
+
V (P ∗ − P )

ε
(37)
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